Numerical Optimization with Differential Equations 1 - WS 2018/2019

Exercise 3

Exercise 1

a) Use the first order necessary optimality conditions to find the extrema of the functions

$$
\begin{aligned}
& f(x, y)=x^{2}+y^{2}-x y+2 x-2 y \\
& g(x, y)=x^{2}+y^{2}-3 x y+2 x-2 y \\
& h(x, y)=x^{2}+y^{2}-2 x y+2 x-2 y
\end{aligned}
$$

b) Check if the found points are local minima of the functions using the second order conditions.
c) Are the found minima also global minima?
(6 Points)

Exercise 2

Analyze the solvability properties (uniqueness, global, bounded) of the following scalar inital value problems:
a) $\dot{y}(t)=y(t)^{2}, t \geq 0, y(0)=1$,
b) $\dot{y}(t)=y(t)^{\frac{1}{2}}, t \geq 0, y(0)=1$.
(4 Points)

Exercise 3

Transfer the forth order system of differential equations

$$
\begin{aligned}
v^{(4)}(t) & =\ddot{v}(t)-3 w(t) \\
w^{(4)}(t) & =11 \dot{v}(t) w(t)
\end{aligned}
$$

into a first order system of differential equations.
(4 Points)
M3
We consider the initial value problem

$$
\dot{x}(t)=f(t, x(t), p), \quad x\left(t_{0}\right)=x_{0}
$$

with $x(t) \in \mathbb{R}^{n}$ and $p \in \mathbb{R}^{m}$. The variational differential equations along a solution $x(t)$ are given by

$$
\begin{aligned}
\dot{G}^{x}(t) & =\frac{\partial f}{\partial x}(t, x(t), p) G^{x}(t), & G^{x}\left(t_{0}\right) & =\mathbb{I}_{n \times n} \\
\dot{G}^{p}(t) & =\frac{\partial f}{\partial x}(t, x(t), p) G^{p}(t)+\frac{\partial f}{\partial p}(t, x(t), p), & G^{p}\left(t_{0}\right) & =0_{n \times m}
\end{aligned}
$$

With $G(t)=\left(G^{x}(t) \quad G^{p}(t)\right) \in \mathbb{R}^{n \times(n+m)}$, they can be written in a single system of the form

$$
\dot{G}(t)=\frac{\partial f}{\partial x}(t, x(t), p) G(t)+\left(0_{n \times n} \quad \frac{\partial f}{\partial p}(t, x(t), p)\right), \quad G\left(t_{0}\right)=\left(\begin{array}{ll}
\mathbb{I}_{n \times n} & 0_{m \times n} \tag{1}
\end{array}\right) .
$$

If we are only interested in directional derivatives in directions $d^{x} \in \mathbb{R}^{n}$, $d^{p} \in \mathbb{R}^{m}$, i.e.,

$$
v(t)=G(t)\binom{d^{x}}{d^{p}}=G^{x}(t) d^{x}+G^{p}(t) d^{p} \in \mathbb{R}^{n}
$$

system (1) can be multiplied from the right hand side by the vector $d=\binom{d^{x}}{d^{p}} \in \mathbb{R}^{n+m}$ to yield

$$
\begin{equation*}
\dot{v}(t)=\frac{\partial f}{\partial x}(t, x(t), p) v(t)+\frac{\partial f}{\partial p}(t, x(t), p) d^{p}, \quad v\left(t_{0}\right)=d^{x} . \tag{2}
\end{equation*}
$$

(a) Formulate the variational differential equation (1) with respect to the initial values $x^{0}=$ $(R(0), F(0))^{T}$ and parameters $(\alpha, \beta, \gamma, \delta)$ for the predator-prey system from Sheet 1.
(b) Use ode45 to solve the combined system

$$
\binom{\dot{x}(t)}{\dot{v}(t)}=\binom{f(t, x(t), p)}{\frac{\partial f}{\partial x}(t, x(t), p) v(t)+\frac{\partial f}{\partial p}(t, x(t), p) d^{p}}, \quad x\left(t_{0}\right)=x^{0}, v\left(t_{0}\right)=d^{x}
$$

on the intervall $[0,300]$ with $x^{0}=(20,10)^{T}, \alpha=0.2, \beta=0.01, \gamma=0.001$, and $\delta=0.1$ for each of the six derivative directions

$$
d \in\left\{\left(\begin{array}{l}
1 \\
0 \\
\hline 0 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
\hline 0 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
\hline 1 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
\hline 0 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
\hline 0 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
\hline 0 \\
0 \\
0 \\
1
\end{array}\right)\right\} .
$$

We are interested in the values of $v(300)=G(300) d$ for each of the six directions of d.

Hand in solutions on Tuesday, November 13th, at the beginning of the lecture!
Submit your Matlab solutions until Tuesday, November 20th, 11:00 AM by email to your tutor.

