Numerical Optimization with Differential Equations 1 - WS 2018/2019 Exercise 4

Exercise 1

Let measurement data η_i be given with corresponding model responses $h_i(t_i, x(t_i), p)$ and measurement errors ϵ_i , i = 1, ..., M. The measurements shall be independent. We consider least-squares functionals as maximum-likelihood estimators.

Which assumptions on the distribution of the measurement errors have been made for the following functionals?

a.
$$\min \sum_{i=1}^{M} (\eta_i - h_i(t_i, x(t_i), p))^2,$$

b. $\min \sum_{i=1}^{M} \frac{(\eta_i - h_i(t_i, x(t_i), p))^2}{\sigma_i^2}$ with $\sigma_i > 0, i = 1, \dots, M,$
c. $\min \sum_{i=1}^{M} w_i \cdot \frac{(\eta_i - h_i(t_i, x(t_i), p))^2}{\sigma_i^2}$ with $\sigma_i > 0$ and $w_i \in \{0, 1\}, i = 1, \dots, M,$
(6 Points)

Exercise 2

Let $J \in \mathbb{R}^{m \times n}$ be a matrix. Show that the *Moore-Penrose Pseudo Inverse* J^{\dagger} exists and is uniquely determined by the four axioms

$$J^{\dagger}JJ^{\dagger} = J^{\dagger}, \qquad JJ^{\dagger}J = J, \qquad J^{\dagger}J = (J^{\dagger}J)^{T}, \qquad JJ^{\dagger} = (JJ^{\dagger})^{T}.$$
(4 Points)

Exercise 3

Let $J_1 \in \mathbb{R}^{m_1 \times n}$ and $J_2 \in \mathbb{R}^{m_2 \times n}$ be matrices satisfying

(CQ) Rang(J₂) = m₂ ≤ n,
 (PD) Rang (J₁ / J₂) = n ≤ m₁ + m₂.

Show

a. The matrix $J_1^T J_1 \in \mathbb{R}^{n \times n}$ is positive definite on the nullspace of J_2 , i.e. $x^T J_1^T J_1 x > 0$ for all $x \in \mathbb{R}^n \setminus \{0\}$ with $J_2 x = 0$.

b. The matrix
$$\begin{pmatrix} J_1^T J_1 & J_2^T \\ J_2 & 0 \end{pmatrix}$$
 is regular.

(4 Points)

Hand in solutions on Tuesday, November 20th, at the beginning of the lecture!