Numerical Optimization with Differential Equations 1 - WS 2018/2019

Exercise 7

Exercise 1

Consider for continuously differentiable $F_1 : \mathbb{R}^n \to \mathbb{R}^{m_1}$ and $F_2 : \mathbb{R}^n \to \mathbb{R}^{m_2}$ the constrained nonlinear least-squares problem

$$\min_{x} \quad \frac{1}{2} \|F_1(x)\|_2^2$$

s.t. $F_2(x) = 0.$

Assume that $x^* \in \mathbb{R}^n$ satisfies $F_1(x^*) = 0$ and $F_2(x^*) = 0$ such that [CQ] and [PD] hold in x^* . Show that for constrained Gauß-Newton and arbitrary $\varepsilon > 0$ there exists a neighbourhood of x^* such that the assumptions of the local contraction theorem are satisfied in this neighbourhood with $\kappa \leq \varepsilon$.

(4 Points)

Exercise 2

Consider for continuously differentiable $F_1 : \mathbb{R}^n \to \mathbb{R}^{m_1}$ and $F_2 : \mathbb{R}^n \to \mathbb{R}^{m_2}$ the constrained nonlinear least-squares problem

$$\min_{x} \quad \frac{1}{2} \|F_1(x)\|_2^2 \\ \text{s.t.} \quad F_2(x) = 0.$$

Let $A = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}$ with $A_i \in \mathbb{R}^{m'_i \times (m_1 + m_2)}$ such that x is a solution of the original problem if and only it is a solution of the following transformed problem:

$$\min_{x} \quad \frac{1}{2} \|A_1 F(x)\|_2^2$$

s.t. $A_2 F(x) = 0.$

- (a) Show affine invariance of the Gauß-Newton method: $x^k = y^k$ for all $k \ge 0$, where $(x^k)_k$ is the sequence of Gauß-Newton iterates applied to the original problem und $(y^k)_k$ the sequence of Gauß-Newton iterates applied to the transformed problem, with $y^0 := x^0$.
- (b) Show that $A_1 = \begin{pmatrix} U & C_1 \\ 0 & C_2 \end{pmatrix}$, $A_2 = \begin{pmatrix} 0 & C_3 \end{pmatrix}$ satisfies this assumption, where $U \in \mathbb{R}^{m_1 \times m_1}$ is orthogonal, $C_3 \in \mathbb{R}^{m_2 \times m_2}$ is non-singular and $C_1 \in \mathbb{R}^{m_1 \times m_2}$ and $C_2 \in \mathbb{R}^{(m'_1 m_1) \times m_2}$ are arbitrary.
- (c) Show that x is a solution to the original problem if and only if x is a solution to the problem

$$\min_{x} \quad \frac{1}{2} \|F_{1}(x)\|_{2}^{2} + \frac{1}{2} \|F_{2}(x)\|_{2}^{2}$$

s.t. $F_{2}(x) = 0.$

(6 Points)

Hand in solutions on Tuesday, December 11th, at the beginning of the lecture!