M. Sc. H. Stibbe

Numerical Optimization with Differential Equations 1 - WS 2018/2019
 Exercise 7

Exercise 1

Consider for continuously differentiable $F_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m_{1}}$ and $F_{2}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m_{2}}$ the constrained nonlinear least-squares problem

$$
\begin{array}{cl}
\min _{x} & \frac{1}{2}\left\|F_{1}(x)\right\|_{2}^{2} \\
\text { s.t. } & F_{2}(x)=0 .
\end{array}
$$

Assume that $x^{*} \in \mathbb{R}^{n}$ satisfies $F_{1}\left(x^{*}\right)=0$ and $F_{2}\left(x^{*}\right)=0$ such that $[\mathrm{CQ}]$ and $[\mathrm{PD}]$ hold in x^{*}. Show that for constrained Gauß-Newton and arbitrary $\varepsilon>0$ there exists a neighbourhood of x^{*} such that the assumptions of the local contraction theorem are satisfied in this neighbourhood with $\kappa \leq \varepsilon$.

Exercise 2

Consider for continuously differentiable $F_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m_{1}}$ and $F_{2}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m_{2}}$ the constrained nonlinear least-squares problem

$$
\begin{array}{cl}
\min _{x} & \frac{1}{2}\left\|F_{1}(x)\right\|_{2}^{2} \\
\text { s.t. } & F_{2}(x)=0 .
\end{array}
$$

Let $A=\binom{A_{1}}{A_{2}}$ with $A_{i} \in \mathbb{R}^{m_{i}^{\prime} \times\left(m_{1}+m_{2}\right)}$ such that x is a solution of the original problem if and only it is a solution of the following transformed problem:

$$
\begin{array}{cl}
\min _{x} & \frac{1}{2}\left\|A_{1} F(x)\right\|_{2}^{2} \\
\text { s.t. } & A_{2} F(x)=0 .
\end{array}
$$

(a) Show affine invariance of the Gauß-Newton method: $x^{k}=y^{k}$ for all $k \geq 0$, where $\left(x^{k}\right)_{k}$ is the sequence of Gauß-Newton iterates applied to the original problem und $\left(y^{k}\right)_{k}$ the sequence of Gauß-Newton iterates applied to the transformed problem, with $y^{0}:=x^{0}$.
(b) Show that $A_{1}=\left(\begin{array}{ll}U & C_{1} \\ 0 & C_{2}\end{array}\right), A_{2}=\left(\begin{array}{ll}0 & C_{3}\end{array}\right)$ satisfies this assumption, where $U \in \mathbb{R}^{m_{1} \times m_{1}}$ is orthogonal, $C_{3} \in \mathbb{R}^{m_{2} \times m_{2}}$ is non-singular and $C_{1} \in \mathbb{R}^{m_{1} \times m_{2}}$ and $C_{2} \in \mathbb{R}^{\left(m_{1}^{\prime}-m_{1}\right) \times m_{2}}$ are arbitrary.
(c) Show that x is a solution to the original problem if and only if x is a solution to the problem

$$
\begin{array}{cl}
\min _{x} & \frac{1}{2}\left\|F_{1}(x)\right\|_{2}^{2}+\frac{1}{2}\left\|F_{2}(x)\right\|_{2}^{2} \\
\text { s.t. } & F_{2}(x)=0 \tag{6Points}
\end{array}
$$

Hand in solutions on Tuesday, December 11th, at the beginning of the lecture!

