Numerical Optimization with Differential Equations 1 - WS 2018/2019

Exercise 11

Exercise 1

Let $\alpha, \beta, \gamma \in \mathbb{N}$ and $k \in \mathbb{R}$. A reaction of α units of substance A and β units of substance B into γ units of substance C can be written as

$$
\alpha A+\beta B \xrightarrow{k} \gamma C .
$$

The integers α, β, γ are called stoichiometric factors and k is the reaction rate. We model this chemical reaction with a system of ordinary differential equations that describes the temporal change of the concentrations $[A],[B]$ and $[C]$ according to

$$
\frac{d[A]}{d t}=-\alpha k[A]^{\alpha}[B]^{\beta}, \quad \frac{d[B]}{d t}=-\beta k[A]^{\alpha}[B]^{\beta}, \quad \frac{d[C]}{d t}=\gamma k[A]^{\alpha}[B]^{\beta}
$$

The first equation describes the relation of the reaction rate of A being proportional to the product of $[A]^{\alpha}$ and $[B]^{\beta}$, i.e., the concentrations to the power of their respective stoichiometric factors. Every (elementary) reaction consumes α units of A, which leads to the factor $-\alpha$. In general, several reactions happen simultaneously and the concentration changes must be added.

Formulate a system of ordinary differential equations for the system of reactions

$$
\begin{array}{rll}
A & \xrightarrow{k_{1}} & B, \\
B+C & \xrightarrow{k_{2}} & A+C, \\
B+B & \xrightarrow{k_{3}} & B+C .
\end{array}
$$

Exercise 2

a) Use the first order necessary optimality conditions to find the extrema of the functions

$$
\begin{aligned}
& f(x, y)=x^{2}+y^{2}-x y+2 x-2 y \\
& g(x, y)=x^{2}+y^{2}-3 x y+2 x-2 y \\
& h(x, y)=x^{2}+y^{2}-2 x y+2 x-2 y
\end{aligned}
$$

b) Check if the found points are local minima of the functions using the second order conditions.
c) Are the found minima also global minima?

Exercise 3

Transfer the forth order system of differential equations

$$
\begin{aligned}
v^{(4)}(t) & =\ddot{v}(t)-3 w(t) \\
w^{(4)}(t) & =11 \dot{v}(t) w(t)
\end{aligned}
$$

in a first order system of differential equations.

Exercise 4

Let $J_{1} \in \mathbb{R}^{m_{1} \times n}$ and $J_{2} \in \mathbb{R}^{m_{2} \times n}$ be matrices satisfying

- (CQ) $\operatorname{Rang}\left(J_{2}\right)=m_{2} \leq n$,
- (PD) Rang $\binom{J_{1}}{J_{2}}=n \leq m_{1}+m_{2}$.

Show
a. The matrix $J_{1}^{T} J_{1} \in \mathbb{R}^{n \times n}$ is positive definite on the nullspace of J_{2}, i.e. $x^{T} J_{1}^{T} J_{1} x>0$ for all $x \in \mathbb{R}^{n} \backslash\{0\}$ with $J_{2} x=0$.
b. The matrix $\left(\begin{array}{cc}J_{1}^{T} J_{1} & J_{2}^{T} \\ J_{2} & 0\end{array}\right)$ is regular.

Exercise 5

In the lecture you got to know the Mayer and the Lagrange cost functional.
a) Show, that every Mayer cost functional can be transformed into a Lagrange cost functional.
b) Show, that this is also possible in reverse.

Exercise 6

We consider a vehicle propelled by rockets running on a straight track described by the ODE

$$
\dot{s}(t)=v(t), \quad \dot{v}(t)=\frac{u(t)}{m(t)}-c_{1} v^{2}(t), \quad \dot{m}(t)=-c_{2} u^{2}(t)
$$

where the states s, v, and m denote the position, velocity, and mass of the vehicle and the control u denotes the rocket thrust. The parameters c_{1} and c_{2} enter in the friction and fuel consumption terms.
(a) Formulate an optimal control problem to save as much fuel as possible when going from $s=0$ to $s=10$ within a given time $T>0$. The initial and terminal velocity must be zero. The initial amount of fuel is $m_{0}>0$.
(b) Discretize the problem from (a) with direct multiple shooting and a piecewise constant control discretization on the shooting grid $0=t_{0}<t_{1}<\cdots<t_{M}=T$. Write down the resulting NLP.

Exercise 7

Consider the problem

$$
\begin{array}{cl}
\min _{x_{1}, x_{2}} & x_{1}+x_{2} \\
\text { s.t. } & x_{1}^{2}+x_{2}^{2}-2=0
\end{array}
$$

Given are $x^{0}=(-1,-1)^{T}$ and $\lambda^{0}=-1$.

- Calculate $x^{1}=x^{0}+\Delta x^{0}$ using the full step SQP method with the exact Hessian.
- For this purpose, solve the Quadratic Problem in x^{0}, λ^{0}.

Exercise 8

Consider for continuously differentiable $F_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m_{1}}$ and $F_{2}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m_{2}}$ the constrained nonlinear least-squares problem

$$
\begin{array}{cl}
\min _{x} & \frac{1}{2}\left\|F_{1}(x)\right\|_{2}^{2} \\
\text { s.t. } & F_{2}(x)=0 .
\end{array}
$$

Assume that $x^{*} \in \mathbb{R}^{n}$ satisfies $F_{1}\left(x^{*}\right)=0$ and $F_{2}\left(x^{*}\right)=0$ such that $[\mathrm{CQ}]$ and $[\mathrm{PD}]$ hold in x^{*}. Show that for constrained Gauß-Newton and arbitrary $\varepsilon>0$ there exists a neighbourhood of x^{*} such that the assumptions of the local contraction theorem are satisfied in this neighbourhood with $\kappa \leq \varepsilon$.

You do not have to hand in these exercises, there will be a discussion in the tutorial.

