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Exercise 1
Let a, 8,7 € Nand k& € R. A reaction of « units of substance A and [ units of substance B into
~ units of substance C' can be written as

oA+ BB *, ~C.

The integers «, 5,7 are called stoichiometric factors and k is the reaction rate. We model this
chemical reaction with a system of ordinary differential equations that describes the temporal
change of the concentrations [A], [B] and [C] according to

d[A]
dt

_ « d[B] _ «a
— —ak{AIP[BY, 7 = ~BHAI[BY,

d[C]
—— = yk[A]*[B)’.

L2 = k(A8

The first equation describes the relation of the reaction rate of A being proportional to the
product of [A]* and [B]?, i.e., the concentrations to the power of their respective stoichiometric
factors. Every (elementary) reaction consumes « units of A, which leads to the factor —a. In
general, several reactions happen simultaneously and the concentration changes must be added.

Formulate a system of ordinary differential equations for the system of reactions

A Mo
B+C 2 a4c,

B+B M B+cC.

Exercise 2

a) Use the first order necessary optimality conditions to find the extrema of the functions

f(z,y) :x2+y2—xy+2:n—2y
g(z,y) = 2> + y* — 3zy + 22 — 2y
h(z,y) = 2? + y* — 2zy + 22 — 2y.

b) Check if the found points are local minima of the functions using the second order condi-
tions.

¢) Are the found minima also global minima?



Exercise 3
Transfer the forth order system of differential equations

oW (t) = 6(t) — 3w(t)
w® () = 110(H)w(t)

in a first order system of differential equations.

Exercise 4

Let J; € R™*" and Jo € R™2*" be matrices satisfying

e (CQ) Rang(J) = mg <mn,

e (PD) Rang( j; ) =n < mq + mo.

Show

a. The matrix J{J; € R**" is positive definite on the nullspace of Jo, i.e. 2T J{ Jiz > 0 for
all z € R™\ {0} with Jox = 0.

Jrg  Jr

b. The matrix ( J 0

> is regular.
Exercise 5
In the lecture you got to know the Mayer and the Lagrange cost functional.

a) Show, that every Mayer cost functional can be transformed into a Lagrange cost functional.
b) Show, that this is also possible in reverse.

Exercise 6
We consider a vehicle propelled by rockets running on a straight track described by the ODE

s(t) =w(t), o(t)= ult) c1v?(t), m(t) = —cou?(t),

m(t)
where the states s, v, and m denote the position, velocity, and mass of the vehicle and the control
u denotes the rocket thrust. The parameters ¢; and ¢y enter in the friction and fuel consumption
terms.

(a) Formulate an optimal control problem to save as much fuel as possible when going from
s =0 to s = 10 within a given time 7" > 0. The initial and terminal velocity must be zero.
The initial amount of fuel is mg > 0.

(b) Discretize the problem from (a) with direct multiple shooting and a piecewise constant
control discretization on the shooting grid 0 =ty < t; < --- < tpy = T. Write down the
resulting NLP.



Exercise 7
Consider the problem

min x1 + x9
x1,x2

st. 2t +x3-2=0
Given are 7° = (—1,—1)T and \? = —1.
e Calculate ' = 2% + Az using the full step SQP method with the exact Hessian.

e For this purpose, solve the Quadratic Problem in z°, \°.

Exercise 8
Consider for continuously differentiable F; : R™ — R™! and F5 : R® — R™2 the constrained
nonlinear least-squares problem

min 3| Fy (2)]3

s.t. Fy(z)=0.

Assume that z* € R" satisfies Fi(z*) = 0 and Fy(2*) = 0 such that [CQ] and [PD] hold in x*.
Show that for constrained Gaufi-Newton and arbitrary € > 0 there exists a neighbourhood of x*
such that the assumptions of the local contraction theorem are satisfied in this neighbourhood
with kK < e.

You do not have to hand in these exercises, there will be a discussion in the tutorial.



