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Exercise 11

Exercise 1
Let α, β, γ ∈ N and k ∈ R. A reaction of α units of substance A and β units of substance B into
γ units of substance C can be written as

αA+ βB
k−→ γC.

The integers α, β, γ are called stoichiometric factors and k is the reaction rate. We model this
chemical reaction with a system of ordinary differential equations that describes the temporal
change of the concentrations [A], [B] and [C] according to

d[A]

dt
= −αk[A]α[B]β ,

d[B]

dt
= −βk[A]α[B]β ,

d[C]

dt
= γk[A]α[B]β.

The first equation describes the relation of the reaction rate of A being proportional to the
product of [A]α and [B]β, i.e., the concentrations to the power of their respective stoichiometric
factors. Every (elementary) reaction consumes α units of A, which leads to the factor −α. In
general, several reactions happen simultaneously and the concentration changes must be added.

Formulate a system of ordinary differential equations for the system of reactions

A
k1−→ B,

B + C
k2−→ A+ C,

B +B
k3−→ B + C.

Exercise 2

a) Use the first order necessary optimality conditions to find the extrema of the functions

f(x, y) = x2 + y2 − xy + 2x− 2y

g(x, y) = x2 + y2 − 3xy + 2x− 2y

h(x, y) = x2 + y2 − 2xy + 2x− 2y.

b) Check if the found points are local minima of the functions using the second order condi-
tions.

c) Are the found minima also global minima?



Exercise 3
Transfer the forth order system of differential equations

v(4)(t) = v̈(t)− 3w(t)

w(4)(t) = 11v̇(t)w(t)

in a first order system of differential equations.

Exercise 4

Let J1 ∈ Rm1×n and J2 ∈ Rm2×n be matrices satisfying

• (CQ) Rang(J2) = m2 ≤ n,

• (PD) Rang

(
J1
J2

)
= n ≤ m1 +m2.

Show

a. The matrix JT1 J1 ∈ Rn×n is positive definite on the nullspace of J2, i.e. xTJT1 J1x > 0 for
all x ∈ Rn \ {0} with J2x = 0.

b. The matrix

(
JT1 J1 JT2
J2 0

)
is regular.

Exercise 5
In the lecture you got to know the Mayer and the Lagrange cost functional.

a) Show, that every Mayer cost functional can be transformed into a Lagrange cost functional.

b) Show, that this is also possible in reverse.

Exercise 6
We consider a vehicle propelled by rockets running on a straight track described by the ODE

ṡ(t) = v(t), v̇(t) =
u(t)

m(t)
− c1v2(t), ṁ(t) = −c2u2(t),

where the states s, v, and m denote the position, velocity, and mass of the vehicle and the control
u denotes the rocket thrust. The parameters c1 and c2 enter in the friction and fuel consumption
terms.

(a) Formulate an optimal control problem to save as much fuel as possible when going from
s = 0 to s = 10 within a given time T > 0. The initial and terminal velocity must be zero.
The initial amount of fuel is m0 > 0.

(b) Discretize the problem from (a) with direct multiple shooting and a piecewise constant
control discretization on the shooting grid 0 = t0 < t1 < · · · < tM = T . Write down the
resulting NLP.



Exercise 7
Consider the problem

min
x1,x2

x1 + x2

s.t. x21 + x22 − 2 = 0

Given are x0 = (−1,−1)T and λ0 = −1.

• Calculate x1 = x0 + ∆x0 using the full step SQP method with the exact Hessian.

• For this purpose, solve the Quadratic Problem in x0, λ0.

Exercise 8
Consider for continuously differentiable F1 : Rn → Rm1 and F2 : Rn → Rm2 the constrained
nonlinear least-squares problem

min
x

1
2‖F1(x)‖22

s.t. F2(x) = 0.

Assume that x∗ ∈ Rn satisfies F1(x
∗) = 0 and F2(x

∗) = 0 such that [CQ] and [PD] hold in x∗.
Show that for constrained Gauß-Newton and arbitrary ε > 0 there exists a neighbourhood of x∗

such that the assumptions of the local contraction theorem are satisfied in this neighbourhood
with κ ≤ ε.

You do not have to hand in these exercises, there will be a discussion in the tutorial.


