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Nonlinear Programming Problem

General problem formulation:

min f (x) f : D ∈ Rn → R
s.t. g(x) = 0 g : D ∈ Rn → Rm

h(x) ≥ 0 h : D ∈ Rn → Rk

x variables
f objective function/ cost function/ min−f (x) ≡ −max f (x)
g equality constraints
h inequality constraints
f , g, h shall be sufficiently smooth (e.g. twice differentiable) functions
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Derivatives

First and second derivatives of the objective function or the
constraints play an important role in optimization
The first order derivatives are called the gradient (of the resp. fct)

∇f (x) =
(
∂f
∂x1

,
∂f
∂x2

, . . . ,
∂f
∂xn

)T

and the second order derivatives are called the Hessian matrix
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Local and Global Solutions

Feasible set: S = {x ∈ Rn : g(x) = 0, h(x) ≥ 0}

x∗ global minimizer of f over S ⇐⇒ x∗ ∈ S and f (x) ≥ f (x∗),
∀x ∈ S

x∗ local minimizer of f over S ⇐⇒ x∗ ∈ S and there exists
N (x∗, δ) such that f (x) ≥ f (x∗), ∀x ∈ S ∩N (x∗, δ) where
N (x∗, δ) := {x ∈ Rn : ||x− x∗||2 ≤ δ}
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Ekaterina Kostina Nonlinear Programming IWR School 2018



Local and Global Solutions

Rosenbrock’s test function

Ackeley’s test function

see Wikipedia
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Main Classes of Continuous Optimization Problems

Linear Quadratic

programming:

linear quadratic

objective,
linear constraints in the variables

min
x∈Rn

cTx

+
1
2

xTHx

subject to aT
i x = bi, i ∈ E, aT

i x ≥ bi, i ∈ I,

where c, ai ∈ Rn, for all i, E and I are finite index sets,

H ∈ Rn×n

symmetric.
Unconstrained nonlinear programming

min
x∈Rn

f (x)

Constrained nonlinear programming

min
x∈Rn

f (x) subject to g(x) = 0, h(x) ≥ 0.
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Optimality Conditions for Unconstrained
Optimization

min f (x), x ∈ Rn

Optimality conditions:
give algebraic characteriszations of solutions, suitable for
computations
provide a way to guarantee that a candidate point is optimal
(sufficient conditions)
indicate when a point is not optimal (necessary conditions)
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Optimality Conditions for Unconstrained
Optimization

min f (x), x ∈ Rn, f ∈ C1

Necessary conditions:
x∗ is a local minimizer of f ⇒ ∇f (x∗) = 0 (stationarity)
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Optimality Conditions for Unconstrained
Optimization

stationary

but not a minimum

•

x∗
•
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Stationary Points
(a)-(c) x∗ is stationary: ∇f (x∗) = 0

(a) ∇2f (x∗) posi-

tive definite: local

minimum

(c)∇2f (x∗) indefinite: saddle point

(b)∇2f (x∗) nega-

tive definite: local

maximum
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Optimality Conditions for Unconstrained Convex
Optimization

min f (x), x ∈ Rn

f convex

x∗ is a local minimizer of f ⇒ x∗ is a global minimizer of f

x∗ is stationary⇒ x∗ is a global minimizer of f

f nonconvex

→ look at higher order derivatives

Ekaterina Kostina Nonlinear Programming IWR School 2018



Optimality Conditions for Unconstrained Convex
Optimization

min f (x), x ∈ Rn

f convex

x∗ is a local minimizer of f ⇒ x∗ is a global minimizer of f

x∗ is stationary⇒ x∗ is a global minimizer of f

f nonconvex

→ look at higher order derivatives

Ekaterina Kostina Nonlinear Programming IWR School 2018



Optimality Conditions for Unconstrained Convex
Optimization

min f (x), x ∈ Rn

f convex
x∗ is a local minimizer of f ⇒ x∗ is a global minimizer of f

x∗ is stationary⇒ x∗ is a global minimizer of f

f nonconvex

→ look at higher order derivatives

Ekaterina Kostina Nonlinear Programming IWR School 2018



Optimality Conditions for Unconstrained Convex
Optimization

min f (x), x ∈ Rn

f convex
x∗ is a local minimizer of f ⇒ x∗ is a global minimizer of f

x∗ is stationary⇒ x∗ is a global minimizer of f

f nonconvex

→ look at higher order derivatives

Ekaterina Kostina Nonlinear Programming IWR School 2018



Optimality Conditions for Unconstrained Convex
Optimization

min f (x), x ∈ Rn

f convex
x∗ is a local minimizer of f ⇒ x∗ is a global minimizer of f

x∗ is stationary⇒ x∗ is a global minimizer of f

f nonconvex

→ look at higher order derivatives

Ekaterina Kostina Nonlinear Programming IWR School 2018



Optimality Conditions for Unconstrained Convex
Optimization

min f (x), x ∈ Rn

f convex
x∗ is a local minimizer of f ⇒ x∗ is a global minimizer of f

x∗ is stationary⇒ x∗ is a global minimizer of f

f nonconvex→ look at higher order derivatives

Ekaterina Kostina Nonlinear Programming IWR School 2018



Second-Order Optimality Conditions for
Unconstrained Optimization

min f (x), x ∈ Rn, f ∈ C2

Necessary second-order conditions:
x∗ is a local minimizer of f ⇒ ∇2f (x∗) positive semidefinite
(f locally convex)

Sufficient conditions:
x∗ stationary and ∇2f (x∗) positive definite⇒ x∗ is a (strict) local
minimizer of f
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Stability

Let ε be a perturbation of the problem, then the solution x(ε) should be
a small perturbation of the exact solution x∗:

||x(ε)− x∗|| ≤ c||ε||

f (x) = x4: Minimum at x∗ = 0
f (x) = x4 − εx2: Maximum at x = 0,

Minima at x = ±
√
ε
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Stability

In the example problem the sufficient optimality conditions were
not satisfied (∇2f (x∗) is not positive definite)

One can show:

Optima that satisfy the sufficient optimality conditions are stable
against perturbations
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Ball on a spring without constraints

min
x∈R2

x2
1 + x2

2 + mx2

contour lines of f (x)

gradient vector
∇f (x) = (2x1, 2x2 + m)

unconstrained minimum:

0 = ∇f (x∗)⇔ (x∗1 , x
∗
2 ) = (0,−m

2
)
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Ball on a spring with constraints

min
x∈R2

x2
1 + x2

2 + mx2

h1(x) = 1 + x1 + x2 ≥ 0
h2(x) = 3− x1 + x2 ≥ 0

gradient ∇h1 of active constraint

inactive constraint h2

constrained minimum:

∇f (x∗) = µ1∇h1(x∗)

µ1 is Lagrange multiplier
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Ball on a spring with active constraints

min
x∈R2

x2
1 + x2

2 + mx2

h1(x) = 1 + x1 + x2 ≥ 0
h2(x) = 3− x1 + x2 ≥ 0

“equilibrium of forces”

∇f (x∗) = µ1∇h1(x∗) + µ2∇h2(x∗), µ1 ≥ 0, µ2 ≥ 0

µ1, µ2, are Lagrange multipliers
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Multipliers as “shadow prices”

old constraint: h2(x) ≥ 0
new constraint: h2(x) + ε ≥ 0

What happens if we relax a
constraint?
Feasible set becomes larger,
so new minimum f (x∗ε)
becomes smaller.
How much would we gain?

f (x∗ε) ≈ f (x∗)− εµ2

Multipliers show the hidden
cost of constraints.
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KKT Conditions for Constrained Optimization

min
x∈Rn

f (x), s.t. g(x) = 0, h(x) ≥ 0.

Lagrangian function L : Rn × Rm × Rk → R

L(x, λ, µ) := f (x)−
∑

i

λigi(x)−
∑

i

µihi(x)

Karush-Kuhn-Tucker (KKT) point:
x is a KKT point if there exist λ ∈ Rm and µ ∈ Rk such that (x, λ, µ)
satisfies

g(x) = 0, h(x) ≥ 0

∇xL(x, λ, µ) = 0⇔ ∇f (x) =
∑

i

λi∇gi(x) +
∑

i

µi∇hi(x)

µ ≥ 0, µihi(x) = 0, i = 1, ..., k⇔ µi = 0 or hi(x) = 0
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KKT Conditions: Illustration
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Optimality Conditions for Constrained Optimization

In general in order to derive optimality conditions we need
constraints/feasible set to satisfy regularity assumptions called
constraint qualification (CQ)
CQ: linearized approximation of constraint functions covers the
essential geometry of the feasible set
Examples

The Linear Independence Constraint Qualification (LICQ) at x⇒
∇gi(x), i = 1, ...,m, ∇hi(x), i ∈ I(x), are linearly independent, where
I(x) := {i : 1 ≤ i ≤ k, hi(x) = 0} “active set”
All active constraints (equalities and active inequalities) are linear
Mangansarian-Fromovitz CQ at x⇒∇gi(x), i = 1, ...,m linearly
independent / or linear and ∃p ∈ Rn such that
∇g(x)T p = 0, ∇hi(x)T p > 0, i ∈ I(x)
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No CQ: Example from Fiacco, McCormick

h1(x) := (1− x1)
3 − x2 ≥ 0 x2 ≤ (1− x1)

3

h2(x) := x1 ≥ 0
h3(x) := x2 ≥ 0

∇h1 =

(
−3(1− x1)
−1

)
∇h2 =

(
1
0

)
∇h3 =

(
0
1

)
Active inequalities in (1, 0)T :

h3(x) = 0 and h1(x) = 0
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Optimality Conditions for Constrained Optimization

First-order necessary optimality conditions:
Let x∗ be optimal and CQ are satisfied in x∗, then x∗ is a KKT
point.
Second-order necessary optimality conditions:
Let x∗ be optimal and CQ are satisfied in x∗, then x∗ is a KKT
point and the Hessian ∇2L(x∗, λ∗, µ∗) of the Lagrange function is
positive semidefinite at the tangent set T(x∗):

pT∇2L(x∗, λ∗, µ∗)p ≥ 0,∀p ∈ T(x∗)

T(x∗) := {s : sT∇gi(x∗) = 0, i = 1, ...,m,
sT∇hi(x∗) ≥ 0, i ∈ I(x∗)}

Sufficient optimality conditions: if KKT conditions hold and
∇2L(x∗, λ∗, µ∗) is positive definite at T̃(x∗, λ∗), then x∗ is optimal,
T̃(x∗, λ∗) := {s ∈ T(x∗) : sT∇hi(x∗) = 0, i ∈ I(x∗) with µi > 0}
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Algorithms for Unconstrained Optimization

min f (x) x ∈ Rn

Find a local minimizer x∗ of f (x), i.e. a point satisfying

∇f (x∗) = 0 (stationarity)
and ∇2f (x∗) positive definite
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Algorithms for Unconstrained Optimization

Basic structure of most algorithms:
choose start value x0

for k = 1, ...,

determine search (descent) direction pk

determine steplenght αk

new iterate xk+1 = xk + αkpk

check for convergence

Optimization algorithms differ in the choice of pk and αk
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Properties of Optimization Algorithms

Optimization algorithms are iterative, i.e. they create an infinite (in
practice finite) sequence of points {xk} converging to the
optimum x∗

Two types of convergence:

Local convergence: convergence of the full-step (αk ≡ 1) algorithm
near the solution
Global convergence: convergence of an algorithm starting from an
any arbitrary point x0
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Rates of Convergence

{xk} ⊂ Rn, x∗ ∈ Rn, {xk} → x∗ as k→∞
{xk} → x∗ with rate r if

||xk+1 − x∗||
||xk − x∗||r

= c <∞, for sufficiently large k

r = 1 : linear convergence (c < 1)
r = 2 : quadratic convergence
superlinear convergence: ||x

k+1−x∗||
||xk−x∗|| → 0 as k→∞
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Rates of Convergence
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Generic Linesearch Algorithm

Search direction pk:
f must decrease
along the direction pk

∇f (xk)pk < 0

Steplength αk

to guarantee global convergence:
solve 1D minimization problem
(exact or inexact):

αk = argmin
α

f (xk + αpk)
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Computation of Steplength

Ideal: Move to (global) minimum on the selected line (univariate
optimization, exact line search)

αk = arg min
α

f (xk + αpk)

In practice: approximate solution may guarantee global
convergence, perform only inexact line search

αk ≈ argmin
α

f (xk + αpk)

Problem: how to guarantee sufficient decrease?
Answer: Check e.g. if αk satisfies Armijo-Wolfe conditions
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Armijo-Wolfe Conditions for Inexact Line Search

Armijo condition (sufficent decrease condition):

f (xk + αpk) ≤ f (xk) + c1α
k∇T f (xk)pk, c1 ∈ (0, 1)

Curvature condition:

∇T f (xk + αpk)pk ≥ c2∇T f (xk)pk, c2 ∈ (c1, 1)
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Global Convergence of Generic Line Search Method

f ∈ C1 bounded from below
∇f Lipschitz continuous
Apply Armijo-Wolfe inexact line search
Then

either there exist l ≥ 0 such that ∇f (xl) = 0

or min{ |∇f (xk)T pk|
||sk|| , |∇f (xk)T pk|} → 0 as k→∞
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Global Convergence of Generic Line Search Method

Global convergence theorem:

if ∇f (xk) 6= 0 for all k then

lim
k→∞

||∇f (xk)|| cos θk min{1, ||pk||} = 0,

where θ is an angle between p and −∇f (x)

For global convergence (i.e.||∇f (xk)|| → 0 as k→∞) we need

not only pk to be descent direction
but also cos θk ≥ δ > 0 for all k
(i.e.pk and ∇f (xk) should not become nearly orthogonal!
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Computation of the Search Direction

For the determination of pk frequently first and second order
derivatives of f (xk) are used

We discuss:

Steepest descent method

Newton’s method

Quasi-Newton methods

Left out: conjugate gradients
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Algorithm 1: Steepest Descent Method

Based on first order Taylor series approximation of objective
function

f (xk + pk) = f (xk) +∇T f (xk)pk︸ ︷︷ ︸+...
maximum descent, if

∇T f (xk)pk

||pk||
→ min!

⇒ pk = −∇f (xk)
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Algorithm 1: Steepest Descent Method

Choose steepest descent direction, perform (exact) line search:

pk = −∇f (xk) xk+1 = xk − αk∇f (xk)

search direction is perpendicular to level sets of f (x)
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Convergence of Steepest Descent Method

Excellent global convergence properties
under weak assumptions
Asymptotically, convergence rate is linear

i.e. |f (xk+1)− f (x∗)| ≤ C|f (xk)− f (x∗)|

with C < 1
Convergence can be very slow
if C close to 1

If f (x) = xTAx, A positive definite (quadratic
convex) λi are eigenvalues of A, one can
show that

C ≈ λmax − λmin

λmax + λmin
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Example - Steepest Descent Method

f (x, y) =
(
(x− y2)2 +

1
100

) 1
4

+
1

100
y2

banana valley function

global minimum at x = y = 0
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Example - Steepest Descent Method

Convergence of steepest descent method:
needs almost 35.000 iterations to come closer than 0.1 to the
solution
mean value of convergence rate C ≈ 0.99995
it holds at (x = 4, y = 2)

λmin = 0.1, λmax = 268,C ≈ 268− 0.1
268− 0.1

≈ 0.9993

||xk − x∗||
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Summary: Steepest Descent Methods

first-order method (inexpensive)

global convergence under weak assumptions, but no
second-order optimality guarantees for the generated solution

scale-dependent: when the objective poorly scaled, very slow
convergence, cumulation of round-off errors and break-down

useful for some special applications (e.g. in data analysis)
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Algorithm 2: Newton’s Method

Based on second order Taylor series approximation of objective function

f (xk + pk) = f (xk) +∇T f (xk)pk +
1
2
(pk)T∇2f (xk)pk︸ ︷︷ ︸+...

maximum descent, if

∇T f (xk)pk +
1
2
(pk)T∇2f (xk)pk → min!

→ pk = −(∇2f (xk))−1∇f (xk)

pk is “Newton Direction”

pk is decrease direction if the hessian ∇2f (xk) is positive definite!

Ekaterina Kostina Nonlinear Programming IWR School 2018



Algorithm 2: Newton’s Method

Based on second order Taylor series approximation of objective function

f (xk + pk) = f (xk) +∇T f (xk)pk +
1
2
(pk)T∇2f (xk)pk︸ ︷︷ ︸+...

maximum descent, if

∇T f (xk)pk +
1
2
(pk)T∇2f (xk)pk → min!

→ pk = −(∇2f (xk))−1∇f (xk)

pk is “Newton Direction”

pk is decrease direction if the hessian ∇2f (xk) is positive definite!

Ekaterina Kostina Nonlinear Programming IWR School 2018



Algorithm 2: Newton’s Method

Based on second order Taylor series approximation of objective function

f (xk + pk) = f (xk) +∇T f (xk)pk +
1
2
(pk)T∇2f (xk)pk︸ ︷︷ ︸+...

maximum descent, if

∇T f (xk)pk +
1
2
(pk)T∇2f (xk)pk → min!

→ pk = −(∇2f (xk))−1∇f (xk)

pk is “Newton Direction”

pk is decrease direction if the hessian ∇2f (xk) is positive definite!

Ekaterina Kostina Nonlinear Programming IWR School 2018



Algorithm 2: Newton’s Method

Based on second order Taylor series approximation of objective function

f (xk + pk) = f (xk) +∇T f (xk)pk +
1
2
(pk)T∇2f (xk)pk︸ ︷︷ ︸+...

maximum descent, if

∇T f (xk)pk +
1
2
(pk)T∇2f (xk)pk → min!

→ pk = −(∇2f (xk))−1∇f (xk)

pk is “Newton Direction”

pk is decrease direction if the hessian ∇2f (xk) is positive definite!

Ekaterina Kostina Nonlinear Programming IWR School 2018



Algorithm 2: Newton’s Method

Based on second order Taylor series approximation of objective function

f (xk + pk) = f (xk) +∇T f (xk)pk +
1
2
(pk)T∇2f (xk)pk︸ ︷︷ ︸+...

maximum descent, if

∇T f (xk)pk +
1
2
(pk)T∇2f (xk)pk → min!

→ pk = −(∇2f (xk))−1∇f (xk)

pk is “Newton Direction”

pk is decrease direction if the hessian ∇2f (xk) is positive definite!

Ekaterina Kostina Nonlinear Programming IWR School 2018



Visualization of Newton’s method

pk minimizes quadratic approximation of the objective

Q(pk) = f (xk) +∇T f (xk)pk +
1
2
(pk)T∇2f (xk)pk

gradient direction

Newton direction
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Why is it called Newton’s method?

Newton’s method finds zeros of nonlinear equations. Here: find
solution of the equation

∇f (x) = 0

Newton’s idea: use Taylor series of ∇f at xk:

∇f (xk + pk) ≈ ∇f (xk) +∇2f (xk)pk = 0!

and to make this zero, set:

pk = −(∇2f (xk))−1∇f (xk)︸ ︷︷ ︸
Newton direction

(Full step) Newton’s method: iterate

xk+1 = xk + pk
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Convergence of Newton’s method

Newton’s method has quadratic rate of local convergence

i.e. ||xk+1 − x∗|| ≤ C||xk − x∗||2,C <∞

This is very fast if we are close to a solution:
Doubles the correct digits in each iteration!
Problem:

If the start value x0 of the iteration is near to a saddle point or a
maximum, the full step method converges to this saddle point or
maximum.

Line search helps, but is only possible if p is descent direction, i.e. if
∇2f positive definite.
Ensure this by: Levenberg-Marquardt, or trust-region methods
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Example - Newton’s method

f (x, y) =
(
(x− y2)2 +

1
100

) 1
4

+
1

100
y2

banana valley function

global minimum at x = y = 0
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Example - Newton’s method

Convergence of Newton’s method:
less than 25 iterations for an accuracy of better than 10−7!
convergence roughly linear for first 15-20 iterations since step
length αk 6= 1
convergence roughly quadratic for last iterations with step length
αk = 1

||xk − x∗||
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Comparison of the Steepest Descent and Newton’s
Methods

For banana valley example:
Newton’s method much faster than steepest descent method (factor
1000)
Newton’s method superior due to higher order of convergence
steepest descent method converges too slowly for practical
applications

||xk − x∗||
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Comparison of the Steepest Descent and Newton’s
Methods
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Summary: Newton’s Methods

Fast (i.e. quadratic) local rate of convergence

Scale-invariant w.r.t. linear transformations of the variables

pk is not well-defined if ∇2f (xk) singular, pk is not a descent if
∇2f (xk) is not positive definite

xk can be attracted to local maxima or saddle points of f

Very small neighbourhood of local convergence, Newton’s
method is not globally convergent
Line search, trust region
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Algorithm 3: Quasi-Newton Methods

In practice, evaluation of second derivatives for the hessian is
expensive!
Idea: approximate Hessian matrix ∇2f (xk)

also ensure that the approximation Bk is positive definite

xk+1 = xk − (Bk)−1∇f (xk)

Bk ≈ ∇2f (xk)

methods are known as Quasi-Newton methods
special case: steepest descent method: B = I
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Quasi-Newton Methods

different Quasi-Newton methods:

simplified Newton method: keep Hessian approximation B constant,
e.g.

Bk ≡ ∇2f (x0)

or: use same matrix B for several iterations:

if ||∆xk+1||
∆xk|| ≥ δmax then update Bk ≡ ∇2f (xk)

or, even cheaper: use update-formulas for Hessian...
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Quasi-Newton Update Formulas

Idea: Given an Hessian approximation Bk

find a new approximation Bk+1 that is “close” to Bk and satisfies

∇f (xk) + Bk+1(xk+1 − xk) = ∇f (xk+1)

Advantages:
needs only evaluation of gradient ∇f (xk) (same cost as steepest
descent), but incorporates second order information
additional advantage: can update the inverse (Bk)−1 directly

Examples:
Symmetric Broyden-update
DFP-update (Davidon, Fletcher, Powell)
BFGS-update (Broyden, Fletcher, Goldfarb, Shanno) (most widely used)
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Convergence Properties

Quasi-Newton update methods converge locally superlinearly

i.e. ||xk+1 − x∗|| ≤ Ck||xk − x∗||,Ck → 0

Quasi-Newton methods converge globally (i.e. from arbitrary
initial point), if Bk remain positive definite and line search is used
Quasi-Newton methods most popular method for medium scale
problems
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Constrained Optimization: SQP-method

Constrained problem:

min f (x) f : D ∈ Rn → R
s.t. g(x) = 0 g : D ∈ Rn → Rl

h(x) ≥ 0 h : D ∈ Rn → Rk

Idea: Consider successively quadratic approximations of the problem:

min
p

f (xk) +∇T f (xk)p +
1
2

pT Hkp

s.t. g(xk) +∇g(xk)p = 0

h(xk) +∇h(xk)p ≥ 0

Hk ≈ ∇2L(x, λ, µ)
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Constrained Optimization: SQP-method

if we use the exact Hessian of the Lagrangian

H = ∇2L(x, λ, µ)

this leads to a Newton-method for the optimality conditions and feasibility
(KKT-conditions)

with update-formulas for Hk, we obtain quasi-Newton SQP-methods

if we use appropriate update-formulas, we can have superlinear
convergence

global convergence can be achieved by using a stepsize strategy based
on (inexact) 1D minimization of an appropriate merit function, e.g. exact
merit function

T(x) = f (x) +
∑

eq

γi|gi(x)|+
∑
ineq

βi|min{0, hi(x)}|

with sufficiently large γi, βi

alternatively, global convergence by trust region
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Constrained Optimization: SQP-method

1. Start with k = 0, start value x0 and H0 = I

2. Compute f (xk), g(xk), h(xk),∇f (xk),∇g(xk),∇h(xk)

3. If xk feasible and ||∇L(x, λ, µ)|| < ε then stop→ convergence
achieved

4. Solve quadratic problem (QP) and get pk

5. Perform line search and get stepsize αk

6. Iterate xk+1 = xk + αkpk

7. Update Hessian of the Lagrange function
8. k = k + 1, goto step 2
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Solution of the Quadratic Program

Unconstrained case:

min
p

gTp +
1
2

pTHp

H must be positive definite, otherwise the optimization problem
has no solution
necessary optimality condition:

Hp + g = 0

=> use cholesky-method or cg-method to solve
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Solution of the Quadratic Program

equality constrained case:

min
p

gTp +
1
2

pTHp

Ap + a = 0

necessary optimality condition (KKT-system): ∃λ such that(
H AT

A 0

)
= −

(
g
a

)

matrix is indefinite, use range- or nullspace-method to solve
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Solution of the Quadratic Program

equality and inequality constrained case:

min
p

gT p +
1
2

pT Hp

Ap + a = 0

Bp + b ≥ 0

use active-set-strategy

aim: find out which inequalities are active at the solution and which not

idea: solve a sequence of equality constrained QPs

min
p

gT p +
1
2

pT Hp

Ap + a = 0

Bip + bi = 0, i ∈ Wk

where Wk is a “guess” for an optimal active set
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Active-Set Strategy: Example

min(p1 − 1)2 + (p2 − 2.5)2

p1 + 2p2 + 2 ≥ 0

−p1 − 2p2 + 6 ≥ 0

−p1 − 2p2 + 2 ≥ 0

p1 ≥ 0

p2 ≥ 0

p0 = (2, 0)T , W0 = {3, 5}, negative
multiplier with respect to constraint 3,
remove constraint 3

p1 = (2, 0), W1 = {5}, no negative
multipliers, solve QP, step length θ = 1

p2 = (1, 0), W2 = {5}, negative
multiplier respect to constraint 5,
remove constraint 5

p3 = (1, 0), W3 = {}, no negative
multipliers, solve QP, step length θ < 1,
constraint 1 gets active

p4 = (1, 1.5), W4 = {1}, no negative
multipliers, solve QP, step length θ = 1

p5 = (1.4, 1.7), W5 = {3, 5} all
multipliers positive→ solution
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multipliers, solve QP, step length θ = 1

p2 = (1, 0), W2 = {5}, negative
multiplier respect to constraint 5,
remove constraint 5

p3 = (1, 0), W3 = {}, no negative
multipliers, solve QP, step length θ < 1,
constraint 1 gets active

p4 = (1, 1.5), W4 = {1}, no negative
multipliers, solve QP, step length θ = 1

p5 = (1.4, 1.7), W5 = {3, 5} all
multipliers positive→ solution
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Alternative Methods for Constrained Optimization

Penalty and barrier methods
Augmented lagrangian methods
Interior point methods for inequality constrained problems
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Summary: Optimization Methods Overview

Optimization problems can be (un)constrained, (non)convex, (non)linear,
(non)smooth, continuous/integer,(in)finite dimensional, ...

Here: try to find local minima of smooth nonlinear problems: ∇f (x) = 0
(resp. ∇L(x, λ, µ) = 0, g(x) = 0, hactive = 0)

Starting at an initial guess x0 , most methods iterate xk+1 = xk + αkpk with
search direction pk and step length αk

Search direction can be chosen differently

steepest descent (simple, but slow and rarely used in practice)
Newton’s method (very fast if Hessian cheaply available)
Quasi-Newton methods (cheap, fast, and popular, e.g. BFGS)
SQP methods for constrained optimization
CG method (good for very large scale problems)

Other methods: direct search, simulated annealing, genetic algorithms,
... useful for special optimization problems
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Thank you for your attention!
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