Gewöhnliche Differentialgleichungen erster Ordnung

Ekaterina Kostina

Department of Mathematics and Computer Science University of Marburg

Vorlesung, 17.06.2009

17. Juni, 2009

Inhalt

Dynamische Prozesse

Gewöhnliche Differentialgleichungen erster Ordnung

Anfangswertprobleme

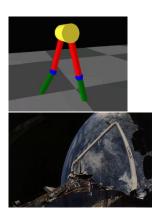
Existenz und Eindeutigkeit von Lösungen

Numerische Verfahren

Dynamische Prozesse

- Gewöhnliche Differentialgleichungen sind Modellgleichungen zur Beschreibung dynamischer, d. h. zeitveränderlicher Prozesse
- ▶ Sie geben an, wie sich ein Zustand (oder Zustandvektor) x(t) zur Beschreibung eines dynamischen Prozesses in der Zeit ändert
- ▶ Beispiele:
 - Bewegung einer 2-beinigen Laufmaschine
 - Bewegung eines Industrie-Knickarm-Roboters
 - Bewegung eines Satelliten im Erdorbit

Dynamische Prozesse



Gewöhnliche Differentialgleichungen erster Ordnung

Eine gewöhnliche Differentialgleichung

$$\dot{x}(t) = \frac{dx(t)}{dt} = f(t, x(t))$$

beschreibt die "Veränderung von x(t) pro Zeiteinheit"

$$\frac{dx(t)}{dt} = \lim_{h \to 0} \frac{x(t+h) - x(t)}{h}$$

- ➤ x(t) Zustand im Zeitpunkt t (Beispiele: Winkel, Position, Energieverbrauch, ...)
- ▶ für jeden Zeitpunkt t ist f nur Funktion des aktuellen t und x(t)

Ekaterina Kostina University of Marburg 17. Juni, 2009

Das Anfangswertproblem

Gegeben:

▶ die Anfangswerte (t_0, x_0) , d. h. der Prozess befindet sich zum Zeitpunkt t_0 im Zustand x_0

$$x(t_0) = x_0$$

▶ und die Differentialgleichung, die die Änderungen von *x* beschreibt

$$\dot{x}(t) = f(t, x(t))$$

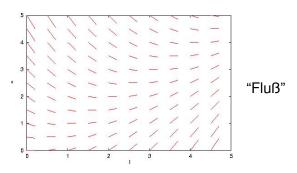
Gesucht:

 eine Lösungskurve ("Trajektorie"), d. h. eine differenzierbare Funktion

$$x:[a,b]\to R$$

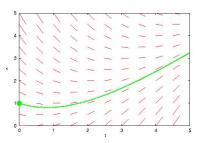
die durch die Anfangswerte geht, und die die Differentialgleichung erfüllt

"Richtungsfeld": Veranschaulichung von f(t,x)

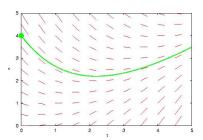


- Steigung der Geradenstücke ist f(t,x)
- ightharpoonup jedes Geradenstück am Punkt (t,x) veranschaulicht Tangente
- die gesuchte Lösungskurve ("Trajektorie") folgt dem "Fluß"

▶ die gesuchte Lösungskurve ("Trajektorie") folgt dem "Fluß"



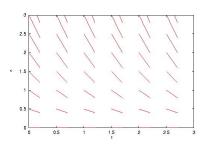
Lösung für
$$x_0 = 1$$
, $t_0 = 0$



Lösung für $x_0 = 4$, $t_0 = 0$

Beispiel: eine einfache lineare Differentialgleichung

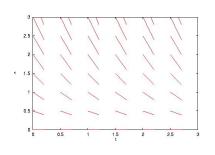
$$\dot{x}(t) = \alpha x(t), \quad \alpha < 0$$

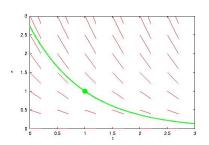


$$\alpha = -1$$

Beispiel: eine einfache lineare Differentialgleichung

$$\dot{x}(t) = \alpha x(t), \quad \alpha < 0$$





$$\alpha = -1$$

$$\alpha = -1, x_0 = 1, t_0 = 1$$

- ▶ Lösung ist $\tilde{x}(t) = x_0 e^{\alpha(t-t_0)}$, d. h. die "Exponentialfunktion"
- ▶ Diese Lösung existiert für alle $t \in]-\infty, +\infty[$

$$\dot{x}(t) = \alpha x(t), \quad \alpha < 0$$

Anwendung: "radioaktiver Zerfall": Element x nimmt nach diesem Gesetz ab

Charakteristisch: "Halbwertzeit" $h = t - t_0 = \text{Zeitraum}$, in dem sich x halbiert, d. h.

$$x(t_0 + h) = x(t_0)/2$$

 $\implies h = -\ln 2/\alpha$

Was sind die Voraussetzungen an f für die Existenz von Lösungen?

- ▶ D Gebiet $\subset R \times R$, d. h. offen und zusammenhängend
- Satz von Peano: Wenn f stetig auf $D \subset R \times R$ ist, existiert für alle Anfangswerte (t_0, x_0) eine Lösung in einer Umgebung U von (t_0, x_0)

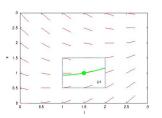
▶ Die Lösung kann bis auf den Rand von D fortgesetzt werden

Beispiel für Existenz einer Lösung

$$\dot{x} = \frac{t-x}{2}, x(t_0) = x_0$$

▶ Die Lösung ist:

$$x = (x_0 - t_0 + 2)e^{(t_0 - t)/2} + t - 2$$



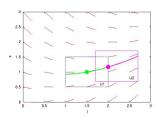
 Folgerung: ich kann (immer weiter) die Lösung eindeutig auf Rand fortsetzen, solange Vorausetzung auf D gilt (d. h. ich kann Lösungen in Umgebungen aneinanderhängen)

Beispiel für Existenz einer Lösung

$$\dot{x} = \frac{t-x}{2}, x(t_0) = x_0$$

Die Lösung ist:

$$x = (x_0 - t_0 + 2)e^{(t_0 - t)/2} + t - 2$$



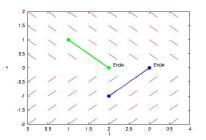
► Folgerung: ich kann (immer weiter) die Lösung eindeutig auf Rand fortsetzen, solange Vorausetzung auf *D* gilt (d. h. ich kann Lösungen in Umgebungen aneinanderhängen)

Was kann passieren, wenn keine Stetigkeit vorliegt?

Gegenbeispiel aus der Mechanik

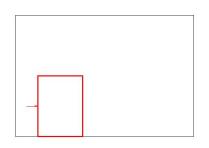
$$\dot{x}(t) = -C \text{ sign } (x(t)), \ C > 0 \text{ Konstante}$$

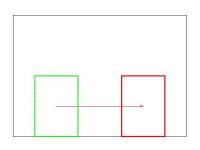




Ekaterina Kostina University of Marburg 17. Juni, 2009

Mechanische Anwendung: Haftreibung



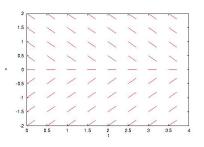


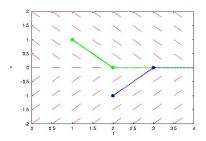
ightharpoonup Für Geschwindigkeit v(t), Geschwindigkeitsänderung $\dot{v}(t)$ gilt

$$\begin{split} \dot{v}(t) &= -C \text{ sign } v(t), \\ v(t) &= v_0 - C(t-t_0), v_0 > 0, \\ &= 0, \text{ sobald } t-t_0 = \frac{v_0}{C} \end{split}$$

danach ist Fortsetzung nicht mehr definiert

▶ Aber: Fortsetzung ist möglich, wenn man sign(0) = 0 setzt (verallgemeinerte Theorie von Filippov)





Wichtig für Modellierung in der technischer Mechanik!

Wann ist die Lösung eindeutig?

- Satz von Picard und Lindelöf: Wenn f nicht nur stetig auf D ⊂ R × R, sondern auch stetig differenzierbar ist, dann ist die Lösung in dieser Menge D eindeutig
- Schwächere Vorausetzung: lokale Lipschitz-Stetigkeit

für alle $(t_0, x_0) \in D$ existiert eine Umgebung U so daß

$$|f(t,x_1) - f(t,x_2)| \le L|x_1 - x_2|, \quad L < \infty, \quad \text{für alle } (t,x_1), \ (t,x_2) \in U$$

(gilt lokal z. B., wenn f stetig differenzierbar)

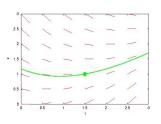
Beispiel für Eindeutigkeit einer Lösung

$$\dot{x} = \frac{t-x}{2}, x(t_0) = x_0$$

▶ Die Lösung ist:

$$x = (x_0 - t_0 + 2)e^{(t_0 - t)/2} + t - 2$$

► Lipschitz-Stetigkeit? Ja, mit L = 1/2, sogar auf ganz $R \times R$



Was kann pasieren, wenn keine lokale Lipschitz-Stetigkeit vorliegt?

- Gegenbeispiel: $\dot{x}(t) = \sqrt{|x(t)|}$
- ▶ $\sqrt{|x(t)|}$ is stetig differenzierbar, und damit lokal Lipschitz-stetig, auf $\{(t,x)|\ x>0,t\ \text{beliebig}\}$ (obere Halbebene) und $\{(t,x)|\ x<0,t\ \text{beliebig}\}$ (untere Halbebene)
- ▶ aber nicht für $\{(t,x)|x=0,t \text{ beliebig}\}$
- ► Es gibt folgende Lösungen:

$$x_0 = 0: \quad x(t) \equiv 0$$

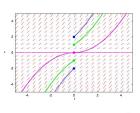
 $x_0 \ge 0: \quad x(t) = \frac{(t - t_0 + 2\sqrt{x_0})^2}{4}, \quad t \ge t_0$
 $x_0 \le 0: \quad x(t) = -\frac{(t - t_0 - 2\sqrt{x_0})^2}{4}, \quad t \le t_0$

Was kann pasieren, wenn keine lokale Lipschitz-Stetigkeit vorliegt?

- Gegenbeispiel: $\dot{x}(t) = \sqrt{|x(t)|}$
- ▶ $\sqrt{|x(t)|}$ is stetig differenzierbar, und damit lokal Lipschitz-stetig, auf $\{(t,x)|\ x>0,t\ \text{beliebig}\}$ (obere Halbebene) und $\{(t,x)|\ x<0,t\ \text{beliebig}\}$ (untere Halbebene)
- ▶ aber nicht für $\{(t,x)|x=0,t \text{ beliebig}\}$
- ► Es gibt folgende Lösungen:

$$x_0 = 0: \quad x(t) \equiv 0$$

 $x_0 \ge 0: \quad x(t) = \frac{(t - t_0 + 2\sqrt{x_0})^2}{4}, \quad t \ge t_0$
 $x_0 \le 0: \quad x(t) = -\frac{(t - t_0 - 2\sqrt{x_0})^2}{4}, \quad t \le t_0$



Wann existiert die Lösung für alle Zeiten?

Satz:

Ist f auf $R \times R$ Lipschitz-Stetig (= global Lipschitz-stetig), d. h. es existiert ein globales $L < +\infty$ so daß für alle $(t, x_1), (t, x_2) \in R \times R$

$$|f(t,x_1)-f(t,x_2)| \le L|x_1-x_2|$$

dann existiert für alle Anfangswerte (t_0, x_0) die Lösung für alle $t \in R$.

▶ Bemerkung: Vorausetzung gilt z.B. wenn $\frac{\partial f}{\partial x}(t,x)$ stetig ist und

$$\left| \frac{\partial f}{\partial x}(t,x) \right| \le L < +\infty$$
, für alle $(t,x) \in R \times R$.

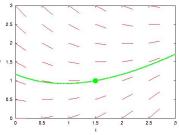
Beispiel für globale Existenz

$$\dot{x} = \frac{t-x}{2}, x(t_0) = x_0$$

▶ Die Lösung ist:

$$x = (x_0 - t_0 + 2)e^{(t_0 - t)/2} + t -$$
^{*} 1.5

► Globale Lipschitz-Stetigkeit? Ja, mit L = 1/2.

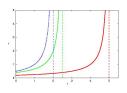


Was kann passieren, wenn keine globale Lipschitz-Stetigkeit vorliegt?

- schon für einfache nichtlineare Differentialgleichungen existiert die Lösung des Anfangswertproblems nicht für alle Zeiten
- ▶ Beispiel: $\dot{x} = f(x) = x^2$; $x(t_0) = x_0$
- ightharpoonup f ist stetig differenzierbar auf $R \times R$ und somit lokal Lipschitz-stetig
- ▶ Es existiert also $\forall (t_0, x_0) \in R \times R$ eine lokale, eindeutige Lösung
- Für $x_0 = 0$ und beliebiges t_0 ist $x(t) \equiv 0$
- Für $x_0 \neq 0$ ist aber

$$x(t) = \frac{1}{\frac{1}{x_0} + (t_0 - t)}$$

▶ Die Lösung wird also singulär für $t = t_0 + \frac{1}{x_0}$!



Die Lösung
$$x(t) = \frac{1}{\frac{1}{x_0} + (t_0 - t)}$$
 besitzt bei

 $t=t_0+\frac{1}{x_0}$ eine Singularität. Das Anfangswertproblem kann daher ausgehend von (t_0,x_0) nur bis $t=t_0+\frac{1}{x_0}$ gelöst werden. Dort befindet sich eine "bewegliche" Singularität, d.h. eine, die von (t_0,x_0) abhängt!

globale Lipschitz-Stetigkeit? Nein, weil

$$|x_1^2 - x_2^2| = |x_1 + x_2||x_1 - x_2|$$

 $|x_1 + x_2|$ kann beliebig groß sein auf R!

Zusammenfassung

- ▶ Ist f stetig auf D, so existiert eine lokale Lösung (Peano)
- ▶ Ist f lokal Lipschitz-stetig in einer Umgebung U von (t_0, x_0) , so ist die Lösung dort eindeutig (Picard-Lindelöf)
- ► Alle Lösungen können auf den Rand eines Gebietes *D* fortgesetzt werden, an dem diese Bedingungen lokal gelten
- ▶ Globale Lipschitz-Stetigkeit auf $R \times R$ liefert globale Lösungen, d. h. für alle Zeiten t

Numerische Näherungsverfahren

- ► Es gibt spezielle nichtlineare Differentialgleichungen, die man in geschlossener Form lösen kann
- dennoch sind die meisten nichtlinearen Differentialgleichungen nur numerisch zu lösen
- Grundverfahren: das "Euler-Verfahren"

"Euler-Verfahren"

Idee:

 nähere Lösung der Differentialgleichung durch das erste Glied der Taylorreihe

$$x(t_0+h) = x(t_0) + h\dot{x}(t_0) + \frac{h^2}{2}\ddot{x}(t_0) + \dots \approx x(t_0) + hf(t_0, x(t_0)),$$

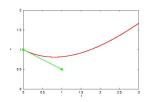
 $x(t_0) = x_0$ ist bekannt, h heißt "Schrittweite"

geh nur einen kleinen Schritt h und wiederhole dann

$$t_0 \rightarrow t_1 = t_0 + h \rightarrow t_2 = t_1 + h \rightarrow t_3 = t_2 + h$$
 usw.

und erhalte Näherung $\tilde{x}(t_k)$

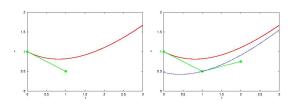
$$\tilde{x}(t_{k+1}) = \tilde{x}(t_k) + hf(t_k, \tilde{x}(t_k)), \ k = 0, 1, 2, ...$$



$$t_1 = t_0 + h$$

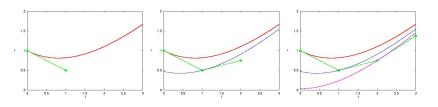
 $x_1 = x_0 + hf(t_0, x_0)$

$$(x_k = \tilde{x}(t_k))$$



$$t_1 = t_0 + h$$
 $t_2 = t_1 + h$
 $x_1 = x_0 + hf(t_0, x_0)x_2 = x_1 + hf(t_1, x_1)$

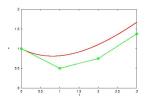
$$(x_k = \tilde{x}(t_k))$$



$$t_1 = t_0 + h$$
 $t_2 = t_1 + h$ $t_3 = t_2 + h$
 $x_1 = x_0 + hf(t_0, x_0)x_2 = x_1 + hf(t_1, x_1)x_3 = x_2 + hf(t_2, x_2)$

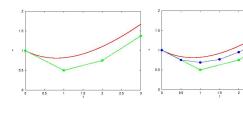
$$(x_k = \tilde{x}(t_k))$$

- ▶ Was passiert, wenn man Schrittweite *h* gegen 0 gehen läßt? Konvergiert das Verfahren, und wie schnell?
- ▶ z. B. $h_i = \bar{h}, \frac{\bar{h}}{2}, \frac{\bar{h}}{4}, \frac{\bar{h}}{8}, ...,$ bzw. $h_i = \bar{h} \ 2^{-i}, \ i = 0, 1, 2, ...$



$$h_0 = 1$$

- ▶ Was passiert, wenn man Schrittweite h gegen 0 gehen läßt? Konvergiert das Verfahren, und wie schnell?
- ▶ z. B. $h_i = \bar{h}, \frac{\bar{h}}{2}, \frac{\bar{h}}{4}, \frac{\bar{h}}{8}, ...$, bzw. $h_i = \bar{h} \ 2^{-i}, \ i = 0, 1, 2, ...$

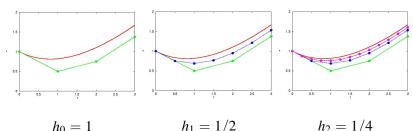


$$h_0 = 1$$

$$h_1 = 1/2$$

▶ Was passiert, wenn man Schrittweite *h* gegen 0 gehen läßt? Konvergiert das Verfahren, und wie schnell?

▶ z. B.
$$h_i = \bar{h}, \frac{\bar{h}}{2}, \frac{\bar{h}}{4}, \frac{\bar{h}}{8}, ...,$$
 bzw. $h_i = \bar{h} \ 2^{-i}, \ i = 0, 1, 2, ...$



- ▶ der "lokale" Fehler in jedem einzelnen Schritt geht wie $\sim h_i^2$ (Taylorreihenrestglied!), aber wir machen auch $\sim \frac{1}{h_i}$ viele Schritte!
- Ergebnis für den "globalen" Fehler:

$$ilde x_i(t_k) o x(t_k)\ (i o\infty)$$
bzw. $| ilde x_i(t_k)-x(t_k)|\le Ch_i,\ ext{für eine Konstante}\ C$

- die Konvergenz ist "linear", d. h. Genauigkeit ist proportional zur Schrittweite h_i
- der Aufwand ist umgekehrt proportional zu 1/h_i, d. h. für jede Stelle zusätzliche Genauigkeit verzehnfacht sich der Aufwand!

Kann man schnellere Konvergenz erreichen?

Idee: Mehr Glieder der Taylorreihe?

Erfordert höhere Ableitungen!

z. B.
$$\ddot{x}(t) = \frac{\partial f}{\partial t}(t, x(t)) + \frac{\partial f}{\partial x}(t, x(t))$$
 (A)

möglich: "automatisches Differenzieren"

Kann man schnellere Konvergenz erreichen?

Idee: Mehr Glieder der Taylorreihe?

Erfordert höhere Ableitungen!

z. B.
$$\ddot{x}(t) = \frac{\partial f}{\partial t}(t, x(t)) + \frac{\partial f}{\partial x}(t, x(t))$$
 (A)

möglich: "automatisches Differenzieren"

Idee: genialer Trick von Runge und Kutta

approximiere Ableitungen $\ddot{x}(t)$, $x^{(3)}(t)$ usw. durch mehrere Werte von f(t,x(t))

Beispiel (Verfahren von Heun):

$$\tilde{x}(t_{k+1}) = \underbrace{\tilde{x}(t_k) + hf(t_k, \tilde{x}(t_k))}_{=:x_{Euler}(t_{k+1})}
+ \underbrace{\frac{h^2}{2} \left[\frac{f(t_{k+1}, x_{Euler}(t_{k+1})) - f(t_k, \tilde{x}(t_k))}{h} \right]}_{=:\frac{h^2}{2} \tilde{x}(t_k) + O(h^3)!}$$
(B)

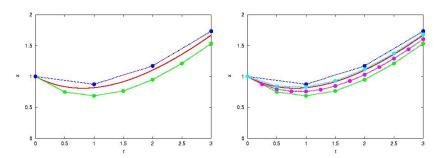
Für den Fehler von (A) und (B) gilt $(h_i = \bar{h}/2^i, i = 0, 1, 2, ...)$

$$|\tilde{x}_i(t_k) - x(t_k)| \leq \bar{C}h_i^2$$
 für alle t_k

mit einer Konstanten $0 < \bar{C} < +\infty$ (verschieden für (A) und (B))

▶ d. h. Genauigkeit ist proportional zu h_i^2 ! ("Ordnung 2"). Für eine zusätzliche Stelle braucht man nur $\sqrt{10}$ -fachen Aufwand!

Vergleich von Euler und Heun Verfahren



Merke: für höhere Genauigkeiten braucht man Verfahren höherer Ordnung!

Andere numerische Verfahren?

- gebräuchliche Runge-Kutta-Typ Verfahren heute? z.B. Dormand-Prince-Formeln (1986)
 - (1) Ordnung 5 mit 5 f-Berechnungen pro Schritt (DOPRI45)
 - (2) Ordnung 8 mit 13 *f*-Berechnungen pro Schritt (DOPRI78)

- Andere wichtige Verfahren
 - (1) lineare Mehrschrittverfahren (DEABM, DAESOL)
 - (2) Extrapolationsverfahren (DIFSYS, ODEX, LIMEX)

Zusammenfassung

- Näherungsverfahren verschiedener Konvergenzordnung stehen zur Verfügung
- Theorie basiert auf Vergleich mit Taylorreihen
- ► Für höhere Genauigkeiten sind Verfahren mit höherer Ordnung vorzuziehen

