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Model Validation:
Bringing Experiment and Modeling Together
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We Need Models That Allow Simulation

From Merriam-Webster’s Dictionary
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Why Do We Need Simulation Models?

E.g. the concept of “digital twins”
(GE, Siemens, ...)

GE Report Oct 4, 2015

every new product or a physical economical process has a digital twin which
includes a collection of models and algorithms;
which accompanies the process from the “origin” (modeling) through its life
time, “growing” together with the process;
is used among others to analyze data, predict malfunctioning and perform
optimal operation.
“The Wall Street Journal”, Jan 15, 2016: GE Digital CEO Says “Digital Twins”
Will Optimize Machinery, Human Health

Another example: development and admission of drugs

Necessary precondition: validated models with reliable parameter
estimates
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Dynamic Process Models

Ordinary Differential Equations (ODE)
Boundary Conditions
Measurement Functions
Differential Algebraic Equations (DAE)
Partial Differential Equations (PDE) and Method of
Lines (MOL)
Models with Switches
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Ordinary Differential Equations (ODE)

System dynamics is influenced by controls/inputs and unknown
parameters

ẋ(t) = f (t, x(t), p, u(t))

• simulation interval: [t0, tend]

• time t ∈ [t0, tend]

• state x(t) ∈ Rnx

• controls u(t) ∈ Rnu ←− inputs

• parameters p ∈ Rnp ←− unknown
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ODE Example: Harmonic Oscillator

Mass m with spring constant k and unknown friction coefficient β:

ẋ1(t) = x2(t)
ẋ2(t) = − k

m (x1(t)− u(t)) − βx2(t)

• state x(t) ∈ R2

• position of mass x1(t)
• velocity of mass x2(t)
• control: acceleration u(t) ∈ R ←− given input
• parameter: friction β ∈ R ←− unknown
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Boundary Conditions

Constraints on initial or intermediate values are important part of
dynamic model

Standard Form:

r(x(t0), x(t1), . . . , x(tend), p) = 0, r ∈ Rnr

E.g., fixed or parameter dependent initial value x0:

x(t0)− x0(p) = 0 (nr = nx)

or periodicity:
x(t0)− x(tend) = 0 (nr = nx)

Note: Initial values x(t0) need not always be fixed!
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Measurement Functions

We can measure functions of states and parameters:

Mi(x(ti), p) i = 1, . . . ,N

Mi ∈ Rmi , often nonlinear
altogether

∑N
i=1 mi measurements

measurement times t1, . . . , tN ∈ [t0, tend]
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Example: The Light Reaction in Photosynthesis

Baake, Schlöder, 1992

three experiments with different light intensities

Laboratory Strasser, Stuttgart
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Photosynthesis: ODE

electron transport chain
in photosynthesis:

mathematical model:
nonlinear ODE
with 6 states and 4+2
parameters

ẋ1 = (ka + k3(ptot − x6))x1 + k3x5x6

ẋ2 = kax1 − (k1 + k3(ptot − x6))x2 + k−1x3 + k3x6(1 −
∑5

i=1 xi)

ẋ3 = k1x2 − (ka + k−1)x3

ẋ4 = kax3 − k2x4 + k−2x5

ẋ5 = k3x1(ptot − x6) + k2x4 − (ka + k−2 + k3x6)x5

ẋ6 = −k3(1 −
∑5

i=1 xi)x6 + k3(x1 + x2)(ptot − x6) + (ptot − x6)klim

with

ka =
I2(1 − p2T )

1 − p22 − p2T + p22p2T (x1 + x3 + x5)
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Photosynthesis: Boundary Conditions

Initial values are given (partly depending on parameters):

r(x(0), p) =


x1(0)− c1
x2(0)− c2
x3(0)− c3
x4(0)− c4
x5(0)− c5
x6(0)− ptot

 = 0
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Photosynthesis: Measurement Function

Fluorescence is nonlinear function of states and parameters:

Mi(x(ti), p) =

{
1− p2T − p22

p2T
+

1− (x1(ti) + x3(ti) + x5(ti))

1 + p22p2T (x1(ti)+x3(ti)+x5(ti))
1−p2T−p22

}
· S · I2

Extra parameter (S) in measurement function (unknown gauge of
apparatus)
Fluorescence measured at 96 time points t1, . . . , t96.

Aim: Estimate model parameters from fluorescence
measurements of living tobacco leaf
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Photosynthesis: Multiple Experiment Structure

Data: 3 experiments with different light intensities
(96 fluorescence measurements)

to be estimated:

4 system parameters
ptot, p2T , p22, k3

+ 1 measurement parameter S

+ 3 x 2 parameters depending on
experiment klim, I2
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Satellite Orbit Determination: False injection orbit

Actual injection orbit differs signifi-
cantly due to launcher mal-function
or underperformance

(SPACEFLIGHT NOW, 21.02.2002): ... the Ariane 5 launcher had propelled
the Artemis satellite into a transfer orbit that was lower than expected, with the
apogee at only 17 000 km rather than the nominal 36 000 km ...

Similar: Galileo satellite (August 2014)!
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Satellite Orbit Determination: False injection orbit

Important: Fast and reliable deter-
mination of satellite orbit in order to

predict future trajectory

perform correction maneuvers

(SPACEFLIGHT NOW, 21.02.2002): ... the Ariane 5 launcher had propelled
the Artemis satellite into a transfer orbit that was lower than expected, with the
apogee at only 17 000 km rather than the nominal 36 000 km ...

Similar: Galileo satellite (August 2014)!
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Satellite Dynamics

Kepler equations augmented by perturbations
ṙ(t) = v(t), v̇(t) = − GM⊕

‖r(t)‖3 r(t) + pert(r(t), v(t), t)

due to external forces
gravitational forces of sun and moon

inhomogeneities of earth’
gravitational field

air drag

solar radiation pressure

dynamic solid tide

relativistic effects

gravitational forces from Venus and
Jupiter

...
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Satellite Dynamics

Kepler equations augmented by perturbations
ṙ(t) = v(t), v̇(t) = − GM⊕

‖r(t)‖3 r(t) + pert(r(t), v(t), t)

Results in small but complex nonlinear differential equation
system in six states with discontinuities in right-hand side

Orbit uniquely defined if full state vector
(

r(t0)
ṙ(t0)

)
known at a

time t0
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Data

Observations of the satellite from different ground stations

Typical measurements:
range

range rate

azimuth and elevation angles

Malindi Ground Station
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Range Measurements

distance between ground station and satellite

M1(x(tM), tM) = m(x(tM), tM) + Mcorr
1 (x(tM), tM)

where
m(x(tM), tM) = 2‖r(tM)− rstat(tM)‖2

x(tM) =
(

r(tM)

v(tM)

)
- position of the satellite at the moment tM

rstat(tM) - position of the ground station at the moment tM

correction term Mcorr
1 (x(tM), tM) takes into account:

motion of satellite and station during signal travel time

systematic errors of physical nature (atmosphere)

systematic errors of technical nature (biases, delays, ...)
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Range Rate Measurements

change in distance between ground station and satellite

M2(x(tM), tM) =
m(x(tM + h), tM + h)− m(x(tM), tM)

h
+ Mcorr

2 (x(tM), tM)

where
m(x(tM), tM) = 2‖r(tM)− rstat(tM)‖2

x(tM) =
(

r(tM)

v(tM)

)
- position of the satellite at the moment tM

rstat(tM) - position of the ground station at the moment tM

correction term: motion of station and satellite, biases, ...
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Angle Measurements

observation direction (azimuth and elevation angle)

M3,4(x(tM), tM) = W3,4(x(tM), tM) + Mcorr
3,4 (x(tM), tM)

where
W3(x(tM), tM) = arctan

(
sE
sN

)
for azimuth angle

W4(x(tM), tM) = arctan

(
sZ√

s2
E+s2

N

)
for elevation angle sE

sN
sZ

 =

 −sinλ
cosλ

0

−sinϕcosλ
−sinϕsinλ

cosϕ

cosϕcosλ
cosϕsinλ

sinϕ

 · (r − rstat)

λ and ϕ are the longitute and altitude of the ground station respectively
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Satellite Orbit Determination

Parameters to be estimated:

Six orbit elements at a given time (epoch)

in coop with ESA
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Dynamic Process Models

Ordinary Differential Equations (ODE)
Boundary Conditions
Measurement Functions
Differential-Algebraic Equations (DAE)
Partial Differential Equations (PDE) and Method of
Lines (MOL)
Models with Switches

Optimization Methods for Calibration and Validation of Dynamic Models Bangkok 2017



Differential-Algebraic Equations (DAE)

Augment ODE by algebraic equations g and algebraic states z

ẏ(t) = f (t, y(t), z(t), u(t), p)

0 = g(t, y(t), z(t), u(t), p)

• differential states y(t) ∈ Rnx

• algebraic states z(t) ∈ Rnz

• algebraic equations g(·) ∈ Rnz

Example: index 1 DAE
⇔ matrix ∂g

∂z ∈ Rnz×nz invertible
. . . possible after index reduction
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Example: Index 1 DAE

0 = g(t, y, z)

0 =
d
dt

g(t, y, z) =
∂g
∂t

+
∂g
∂y

ẏ +
∂g
∂z

ż

If the matrix ∂g
∂z ∈ Rnz×nz is invertible then we can compute

ż = −
(
∂g
∂z

)−1(
∂g
∂t

+
∂g
∂y

ẏ
)

and obtain an ODE system for x :=

(
y
z

)
:

ẋ =

(
f (t, x)

−
(
∂g
∂z

)−1 (
∂g
∂t + ∂g

∂y ẏ
) )
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Example DAE: Urethane Reaction

S. Körkel, Cooperation with BASF SE

A + B → C
A + C 
 D
3 A → E

A: isocyanate B: butanol
C: urethane D: allophanate
E: isocyanurate L: solvent DMSO

Prototype for polyurethane
production

Main product C, byproduct D

Composition of the products
determines physical properties of
the polyurethane plastic material
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Example DAE: Urethane Reaction

S. Körkel, Cooperation with BASF SE

Reactor: ideally stirred tank
Two controlled feeds:
A in DMSO and B in DMSO
Control of reactor temperature

Optimization Methods for Calibration and Validation of Dynamic Models Bangkok 2017



Example DAE: Urethane Reaction
S. Körkel, Cooperation with BASF SE

ṅC = V · (r1 − r2 + r3)

ṅD = V · (r2 − r3)

ṅE = V · r4

0 = nA + nC + 2nD + 3nE − nA0 − nAea(t)

0 = nB + nC + nD − nB0 − nBeb(t)

0 = nL − nL0 − nLea(t)− nLeb(t)

nC(t0) = nD(t0) = nE(t0) = 0

r1 = k1 ·
nA

V
·

nB

V
r3 = k3 ·

nD

V

r2 = k2 ·
nA

V
·

nC

V
r4 = k4 · (

nA

V
)

2

ki=1,2,4 = kref i · exp

(
−

Eai

R
·
(

1
T(t)
−

1
Tref i

))
k2

k3
= kc2 · exp

(
−

dh2

R
·
(

1
T(t)
−

1
Tc2

))
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Urethane Reaction: Features

Model

6 state variables nA, nB, nC, nD, nE, nL , nonlinear Arrhenius kinetics

8 unknown parameters p : steric factors kref i , activation energies Eai,
i = 1, 2, 4, equilibrium constant kc2, reaction enthalpy dh2

3 time dependent control functions u(t): temperature T(t), feed profiles
feed1(t), feed2(t)

7 control variables q: initial molar numbers in the reactor nA0, nB0, nL0 and
in the feeds nA,e1,0, nB,e2,0, nL,e1,0, nL,e2,0

Measurements

3 measurement methods (A, C/D, E) with different accuracies and
different costs!
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Urethane Example: Measurement Functions

Measurements: Mass percentage of A, C, D, E, e.g.

MnC (x, p) = 100 · nCMC

nAMA + . . .+ nEME + nLML

Measurements and Simulated Model Response
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Dynamical Process Models

Ordinary Differential Equations (ODE)
Boundary Conditions
Measurement Functions
Differential-Algebraic Equations (DAE)
Partial Differential Equations (PDE) and Method of
Lines (MOL)
Models with Switches
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Partial Differential Equations

Instationary partial differential equations (PDE) arise, e.g., in
transport processes, wave propagation, ...
Also called “distributed parameter systems”
Often PDE of subsystems are coupled with each other (e.g., flow
connections)
Method of Lines (MOL): discretize PDE in space to yield ODE or
DAE system
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Partial Differential Equations: Example
Convection-Diffusion-Reaction Equation

∂yi

∂t
(t, x) =

∂

∂x

(
D
∂yi

∂x
(t, x)

)
− v

∂yi

∂x

+

m∑
j=1

rj(y(t, x), α(t, x),T(t, x), p) · νij, i = 1, . . . , n

Catalyst deactivation

∂α

∂t
(t, x) = −k(y(t, x), α(t, x),T(t, x), p)

+ Initial and Boundary Conditions

yi(t, x): concentration of species i, i = 1, . . . , n
α(t, x): catalyst activity
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Possible Solution Approach: Method of Lines

Discretize the state variables yi(t) := y(t, xi) on a grid
(xi, i = 1, . . . ,N) with ∆x = xi+1 − xi

Replace spatial derivatives by finite differences, e.g.

y(t, xi+1)− y(t, xi−1)

2∆x
=
∂y
∂x

(t, xi) +O(∆x2)

y(t, xi+1)− 2y(t, xi) + y(t, xi−1)

∆x2 =
∂2y
∂x∂x

(t, xi) +O(∆x2)

Substitute into PDE equation, obtain high-dimensional stiff sparse
ODE/DAE system
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Example: Nonlinear Exchange Rate Dynamics

with S. Jäger

Exchange rate is a stochastic process St, t∈[t0, T] and satisfies stochastic
differential equation

dS = µdt + σdW, W is a Wiener process

The distribution Ft(s) = P(St ≤ s) is defined by a drift term µ and a variance σ2

St = St0 +

t∫
t0

µdt +

t∫
t0

σdW,

The drift term µ and the variance σ2 of are supposed to depend non-linearly on
the real exchange rate s and a set of market fundamental variables Z (e.g. money
amounts, real incomes, nominal interests)

µ = µ(s, Z), σ2 = σ2(s, Z)

initial values St0 , µ and σ2 are unknown and need to be identified!
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Example: Nonlinear Exchange Rate Dynamics

with S. Jäger

Model: µ and σ2 satisfy the Fokker-Planck or forward Kolmogorov
equation for the density function f (t, s) = dFt(s)

ds of the stochastic
process St

∂f
∂t

= −∂(µf )

∂s
+

1
2
∂2(σ2f )

∂s2
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Example: Nonlinear Exchange Rate Dynamics
with S. Jäger

The drift is modelled by the 3d order polynome (Creedy et al, 96;
multiple equilibria, regime switching, multimodality)

µ = µ(t, s,Z) = a0(Z)(s− a1(Z))(s− a2(Z))(s− a3(Z)),

ai(Z) = Ci

K∏
j=1

Zαij
j

and the variance is

σ2 = γ0
2 + γ1

2s

Zj, j = 1, ...,K are the market fundamental variables

Unknown parameters are Ci, αij, j = 1, ...,K, i = 0, 1, 2, 3, γ0, γ1

Optimization Methods for Calibration and Validation of Dynamic Models Bangkok 2017



Example: Nonlinear Exchange Rate Dynamics

with S. Jäger

Data ηj: monthly Dollar/Pound exchange rate

Model response: expected value of the exchange rate

M(tj) =

∞∫
0

f (tj, s)sds
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Example: Nonlinear Exchange Rate Dynamics
with S. Jäger

Boundary conditions:

µ− 1
2
∂(σ2f )

∂s

∣∣∣∣
s=smin

= µ− 1
2
∂(σ2f )

∂s

∣∣∣∣
s=smax

= 0, t ≥ 0.

Initial conditions: we assume that at the time moment t = 0 the
stochastic process is stationary:

f (t, s) |t=0 = f ?(s, p) = exp

 s∫
0

2µ(ξ, p)
σ2(ξ, p)

dξ − lnσ2(s, p) + lnσ2(0, p)

 η?,

η? is a normalizing constant
alternative:

f (t, s) |t=0 = exp
(
−(s− s0)2a2) η?,

with 2 additional parameters a and s0 to estimate.
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Method of Lines (MOL)

E.g. forward Kolmogorov equation for the density function
f (t, s) = dFt(s)

ds of the stochastic process St

∂f
∂t

= −∂(µf )

∂s
+

1
2
∂2(σ2f )

∂s2

introduce spatial grid points s0, . . . , sN

approximate spatial derivatives, e.g. by finite differences

∂f (si)

∂s
≈ f (si+1) + f (si)

h
, etc.

define state vector ycol := (f (s0), . . . , f (sN))T ,
obtain ODE

ẏcol(t) = fcol(ycol(t), µ(t), σ(t), p)
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Transport and Degradation of Xenobiotics in Soil
(..., A. Dieses, in coop. with O. Richter, TU Braunschweig)

Minilysimeter

Investigation of fate of xenobiotics
Expensive lysimeter experiments
for registration
To be replaced by computer
experiments
Here: parameter estimation
Later: Optimal lysimeter
experiments

+ optimal irrigation
+ optimal solute application
+ optimal sampling
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Field experiment: Water Transport (K. Aden)

loamy sand without vegetation
time-domain reflectrometry (TDR): hourly measurements of
water content θ in 7, 15 and 20 cm
period: Oct 28, 1997 - Dec 13, 1997
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Model: Richards Equation

∂θ

∂t
=

∂

∂z

(
D(θ)

∂θ

∂z
− K(θ)

)

K(θ) = KsΘ
1/2[1− (1−Θn/(n−1)

)1−1/n]2
, Θ =

θ − θr

θs − θr

D(θ) = K(θ)C̄(θ)

C̄(θ) =
1

αnm

(
Θ−1/m − 1

)−m
Θ−1/m 1

θ − θr
, m = 1− 1

n

Initial condition: Linear interpolation of θ7cm, θ15cm, θ20cm at begin of
experiments (Oct 28, 1997)
Upper boundary: Dirichlet condition (TDR data in 7 cm)
Lower boundary: Dirichlet condition (TDR data in 20 cm)
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Transport and Degradation of Xenobiotics in Soil
Result: Estimates for n, α and Ks

from TDR measurement data of water content in 15 cm depth
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measurements
simulation

guess estimate
n 1.5 1.262 ± 0.0024
α 0.05 0.0324 ± 0.0024
Ks 35.0 20.92 ± 1.68

α Ks

n 0.14 -0.61
α - -0.94
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Dynamical Process Models

Ordinary Differential Equations (ODE)
Boundary Conditions
Measurement Functions
Differential-Algebraic Equations (DAE)
Partial Differential Equations (PDE) and Method of
Lines (MOL)
Models with Switches
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Models with Switches

ẏ(t) = f (t, x(t), z(t), p, q, u(t), sign(σ(x(t), z(t), p))
0 = g(t, x(t), z(t), p, q, u(t), sign(σ(x(t), z(t), p))

t ∈ [t0; tf ]

Discontinuous dynamics
Monitored by sign of ”switching functions” σ
E.g.

modeling of phase transition in multi-phase reaction systems
simplified modeling of fast transients in processes with varying
time scales

Optimization Methods for Calibration and Validation of Dynamic Models Bangkok 2017



Example: Growth of White Cabbage

Richter, Söndgerath 1990

states: Cabbage’s leaf biomass xL, trunk biomass xS and head
biomass xH

9 parameters a, rL, µL, ρ, rS, rH, mH, λ and tH

dxL

dt
= rL

a + 1
a + exp(ρt)

xL − µLxL

dxS

dt
= rSxL

(
λ− xS

xL

)
dxH

dt
=

{
0 for t ≤ tH

(rHxL − µHxH) for t > tH

sign of “switching function”σ := t − tH determines which model is
taken
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Outline

Introduction

Dynamic Process Models

Parameter Estimation in Dynamic Processes

Optimum Experimental Design
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Parameter Estimation Problems

Parameter Estimation: Problem Formulation
Boundary Value Problem Approach
Generalized Gauss Newton Methods

Optimization Criteria and Convergence
Practical Solution

Sensitivity Analysis
Examples:

Lotka-Volterra, Unstable Process
Orbit Determination Problem for Satellites
Photosynthesis
Bistable Belousov-Zhabotinskii Reaction
Enzyme Reaction Kinetics
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What Is Parameter Estimation?

Determination of coefficients/parameters
in a model

from measured data
such that model matches data
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Parameter Estimation Problem:
Model

Model Equations? (“Forward Problem”)

Differential Algebraic Equations (DAE)

ẏ = f (y, z, p, q, u)

0 = g(y, z, p, q, u)

y: differential variables

z: algebraic variables, x = (y, z)

p: unknown parameters

q: design parameters

u: controls

stiff, nonlinear, with discontinuities, unstable modes, chaotic, ...

Partial Differential Equations (PDE)

ut −∇(K∇u) = f (u, p)

→ semidiscretization in space

+ initial and boundary conditions!
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Parameter Estimation Problem:
Data

Experimental Data?

Data from multiple experiments under varying experimental
conditions

reactions with different initial composition of substances
different inputs (e.g., temperature, feedstreams, ...)
different experimental layout (e.g., a standing or sitting human being
...)

Data for stationary or instationary states,
bifurcations, oscillations, ...
Each has specific model

Outliers in the data

Indirect observation functions (→ and additional parameters), ...
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Parameter Estimation Problem: Observation Model

ηij = Mij(xtrue(tj), ptrue) + εij

M: nonlinear function of states
(differential and algebraic)
and parameters

εij: measurement error

independent

often normally distributed εij ∈ (N (0, σ2
ij)
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Parameter Estimation Problem:
Match Model to the Data

Multiple Experiment Parameter Estimation Problem

min
xl,p

# Exp∑
l=1

∑
i,j

(ηij
l −Mij

l(xl(tjl), p))2

σij
l2 maximum likelihood

xl, p satisfy

• DAE models, l = 1, . . . , #Exp

• additional constraints, e.g., boundary conditions, positivity, ...

r2
l(xl(t1l), ..., xl(tkl), p) = 0 or ≥ 0 , l = 1, . . . , #Exp
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Parameter Estimation Problem:
Match Model to the Data

Multiple Experiment Parameter Estimation Problem

min
xl,p

# Exp∑
l=1

∑
i,j

(ηl
ij −Ml

ij(xl(tl
j), p))2

σl
ij

2
maximum likelihood

xl, p satisfy

• DAE models, l = 1, . . . , #Exp

• additional constraints, e.g. boundary conditions, positivity, ...

rl
2(xl(tl

1), ..., xl(tl
k), p) = 0 or ≥ 0 , l = 1, . . . , #Exp
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Why Least-Squares Objective Function?

Assumptions for distribution of measurement errors: εij ∈ N (0, σ2
ij)

Log-Likelihood function

logL =
∑

i,j

log

(
1

σij
√

2π
e
− (ηij−Mij(x,p))2

2σ2
ij

)

= Const −
∑

i,j

(ηij −Mij(x, p))2

2σ2
ij

max
p

logL ≡ min
p

∑
i,j

(ηij −Mij(x, p))2

2σ2
ij

Then solution p∗ of the parameter estimation problem is a
maximum likelihood estimate for the parameters
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Choice of Norm?

if measurement errors are independent and normally distributed
(εij ∈ N(0, σ2

ij)) then l2 estimation is appropriate:

min
x,p

∑
i,j

(ηij −Mij(x(tj), p))2

σ2
ij

least squares

→ maximum likelihood: Legendre (1805), Gauss (1809)

in case of Laplace distribution
(

1
2|σij|

e
− |t||σij|

)
l1 estimation is

appropriate:

min
x,p

∑
i,j

|ηij −Mij(x(tj), p)|
|σij|

least absolute deviation

→ maximum likelihood: Boscovic (1758), Laplace (1812)
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Properties of l1-Parameter Estimation

under certain regularity assumptions
l1 optimal solution interpolates n “best” measurements
consequently solution is less sensitive to outliers
l1 forms robust alternative to l2 PE !

Optimization Methods for Calibration and Validation of Dynamic Models Bangkok 2017



Properties of l1-Parameter Estimation

under certain regularity assumptions
l1 optimal solution interpolates n “best” measurements
consequently solution is less sensitive to outliers
l1 forms robust alternative to l2 PE !

Data

• Outlier!

Optimization Methods for Calibration and Validation of Dynamic Models Bangkok 2017



Properties of l1-Parameter Estimation

under certain regularity assumptions
l1 optimal solution interpolates n “best” measurements
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Data l2
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Properties of l1-Parameter Estimation

under certain regularity assumptions
l1 optimal solution interpolates n “best” measurements
consequently solution is less sensitive to outliers
l1 forms robust alternative to l2 PE !

Data l2 l1

• Outlier!
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Robust Parameter Estimation

robustness means “insensitivity to small deviations from the
assumptions” (Huber 1981)

even high-quality measurements are not exactly normally
distributed, but typically longer-tailed
(for scientific routine data 1–10% gross errors are the rule rather
than the exception)
gross errors often show up as outliers (although not all outliers
are gross errors)
a single outlier can completely spoil a least squares analysis
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Robust PE: Choice of Cost Functional
least squares norm of measurement errors (normally distributed
measurement error)

min
1
2

#Meas.∑
i

(
εi

σi

)2

robust against outliers l1 norm of measurement errors (Laplace
distributed measurement error)

min
#Meas.∑

i

∣∣∣∣ εi

σi

∣∣∣∣
another robust estimator: hybrid “norm”, Huber-estimator

min
1
2

∑
i:|εi/σi|≤γ

(
εi

σi

)2

+
∑

i:|εi/σi|>γ

(
γ

∣∣∣∣ εi

σi

∣∣∣∣− 1
2
γ2
)

partition constant γ can be determined by the ratio of “bad” data points in
the measurement data for an assumed error probability ε = εi

σi
:

ε→ 0 ⇒ γ →∞ : converges to solution of least squares method,

ε→ 1 ⇒ γ → 0 : converges to solution of l1 approximation
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Robust PE: Choice of Cost Functional
least squares norm of measurement errors (normally distributed
measurement error)
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∣∣∣∣
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1
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σi
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γ
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σi

∣∣∣∣− 1
2
γ2
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:
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Example: a Single Outlier

Data l2 l1

• Outlier!
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Example: a Single Outlier

Data l2 l1 Huber (γ = 0.02)

• Outlier!
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Parameter Estimation Problems

Parameter Estimation: Problem Formulation
Boundary Value Problem Approach
Generalized Gauss Newton Methods

Optimization Criteria and Convergence
Aspects of Practical Solution

Sensitivity Analysis
Examples:

Lotka-Volterra, Unstable Process
Orbit Determination Problem for Satellites
Photosynthesis
Bistable Belousov-Zhabotinskii Reaction
Enzyme Reaction Kinetics
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Direct “All-at-Once” Boundary Value
Problem Methods

the IVP approach: “single shooting”
integrate DAE over whole interval to yield x(t; x0, p)
eliminate - infinite - state variables in favour of unknown parameters
p, plug into suitable optimizer
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Direct “All-at-Once” Boundary Value
Problem Methods

the IVP approach: “single shooting”
integrate DAE over whole interval to yield x(t; x0, p)
eliminate - infinite - state variables in favour of unknown parameters
p, plug into suitable optimizer

�
���

���
���

�
���

���
���

�
���

���
���

�
���

���
���

�
���

���
���

�
���

���
���

����
���

���

���
���

����

���
���

����

Bock and coworkers, 81, . . .

the BVP approach: discretize DAE and solve simultaneously
optimization problem
discretized BVP as equality constraint
further constraints

in one loop!

Flexible realization: multiple shooting
analogous for FD, collocation (e.g. Biegler)
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The Multiple Shooting Method

choose mesh t0 = τ0 < τ1 < . . . < τm = tf
choose initial values sj = (y(τj), z(τj))
as additional variables

solve relaxed DAE IVP at each interval

ẏ = f (y, z, p)

0 = g(y, z, p)

−α(t)g(sj, p)

α(τj) = 1, α(t)→ 0 for t→∞
DAE discretization leads to
additional matching conditions

for continuity: sy
j+1 − y(τj+1; sj, p) = 0

for consistency: g(sj, p) = 0
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After discretization: large scale nonlinear
constrained approximation problem

min
X

1
2
||F1(X)||22

F2(X) = 0 (contains discretized BVP) or ≥ 0

Difficulties
nonlinear equality - and inequality - constrained optimization
problem
large number of variables from discretization

e.g., in case multiple shooting: # of parameters +
# of differential and algebraic variables

× # of multiple shooting points
× # of experiments!

but special block structures
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So Multiple Shooting Makes Things More Difficult?
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FAQ: Why Multiple Shooting?

key property: discretized states as add’l optimization variables
allows for better initial guesses using information about the process,
helps to avoid ”far away” local minima
damps influence of poor parameter guesses
reduces nonlinearity and speeds up convergence (even up to one
step convergence!)
method is numerically stable even for potentially instable, e.g.
chaotic, differential equations

efficient parallel implementation
adaptive accuracy discretization strategies
state-of-the-art solvers for DAE IVP applicable
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An Unstable Test Problem

state equations:

ẋ1 = x2 ẋ2 = µ2x1 − (µ2 + p2) sin pt, t ∈ [0, 1]

x1(0) = 0, x2(0) = π

special solution for “true” parameter value p = π:

x1(t) = sinπt, x2(t) = π cosπt.

µ = 60, i.e. error propagation over [0, 1] is expµ ≈ 1027 - highly
unstable
pseudo random measurement noise, σ = 0.05
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An Unstable Test Problem - Single Shooting - FAILS!

initial trajectory with p = 1 and with p = float(π) in 64 bit
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An Unstable Test Problem - Multiple Shooting -
WORKS!

initial trajectory with p = 1 - convergence after 4 iterations in 64 bit
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Multiple Shooting Reduces Nonlinearity: One Step
Convergence

If:
Dense data for all states are available
Problem equations are linear in parameters
Lengths of multiple shooting interval h→ 0

Then:

One-step-convergence to true parameter values

p1 = p0 + ∆p0 = ptrue + O(hs)
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Lotka-Volterra Problem: Model and Data

ẋ1 = −p1x1 + p2x1x2

ẋ2 = +p3x2 − p4x1x2

x1: predators
x2: preys
DE linear in parameters

Data: σ = 5%
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Lotka-Volterra Problem:
Solution with Multiple Shooting

Initial trajectory

Initial guesses:

p1 = 0.5 p2 = 0.5

p3 = −0.5 p4 = −0.2

Solution trajectory

Solution:

p1 = 1.01± 0.02 p2 = 1.01± 0.03

p3 = 0.99± 0.02 p4 = 1.01± 0.03
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Comparison: Single vs. Multiple Shooting

Single Shooting

Convergence after 8 iterations

Multiple Shooting

Convergence after 4 iterations

Multiple Shooting helps to avoid local minima
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Generation of Initial States for Multiple Shooting
Nodes

important for problem solution→ generation of good initial
guesses for multiple shooting variables
one possibility: solve special nonlinear constrained least squares
problem at each multiple shooting node τj:

min
s

‖sj
ref − s‖2

2

s.t. φj(s, η) = 0 or ≥ 0

sj
ref is a reference value, e.g. the value of the computed trajectory at the end of the previous

interval

constraints φj(s, η) = 0 or ≥ 0 include, e.g., the requirement that initial values should satisfy

the measurements at τj
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Orbit Determination Problem

Minimize deviation of model response M(y(t), p) from measurement
values η

min
y,p

l∑
j=1

mj∑
i=1

(ηij −Mij(y(tj), p)

σij

)2
,

s.t. satellite dynamics is fulfilled

ẏ(t) = f (t, y(t), p)

y(t0) = y0(p)
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Orbit Determination Problem

Minimize deviation of model response M(y(t), p) from measurement
values η

min
y,p

l∑
j=1

mj∑
i=1

(ηij −Mij(y(tj), p)

σij

)2
,

s.t. satellite dynamics is fulfilled

ẏ(t) = f (t, y(t), p)

y(t0) = y0(p)

Parameters to estimate are initial values for the states
+ callibration parameters in measurement functions
+ coefficients for air drag model and/or solar radiation pressure
+ ...
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Orbit Determination Problem

Minimize deviation of model response M(y(t), p) from measurement
values η

min
y,p

l∑
j=1

mj∑
i=1

(ηij −Mij(y(tj), p)

σij

)2
,

s.t. satellite dynamics is fulfilled

ẏ(t) = f (t, y(t), p)

y(t0) = y0(p)

Difficulties: No complete state observation
Outliers in the data
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Generation of Initial States for Multiple Shooting
Nodes: Orbit Determination for Satellites

S. Lenz in coop with ESA

Example:

Range Measurement ηr,j+1 at time τj+1

Positions that fulfill the

measurement are on a sphere

around the station

1. Decompose solution of IVP in position
and velocity

y(τj+1; τj, sj)→
(

(rint
j+1)

T
, (ṙint

j+1)
T
)T

2. Transform position vector into local
tangent coordinate system: rint

j+1 → rlt
j+1

3. Scale position vector to measured range:

rlt,new
j+1 =

ηr,j+1

2

rlt
j+1

||rlt
j+1||2

4. Transform new position vector back into
inertial frame: rlt,new

j+1 → rnew
j+1

5. Combine new position and unchanged
velocity into a vector(

(rnew
j+1)

T
, (ṙint

j+1)
T
)T
→ sj+1

6. Continue integration
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Generation of Initial States for Multiple Shooting
Nodes: Analytical Projection

Example: Orbit Determination for Satellites (ESA) S. Lenz
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Application: Orbit Determination Problems for
Satellites (ARTEMIS-Launch)

initial multiple shooting trajectory (including projections)

(Loading ...)
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Artemis_close_msmpeg4v2.avi
Media File (video/avi)



Satellite Orbit Determination: Result

nominal orbit, actual orbit

(Loading ...)
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m_sat.avi
Media File (video/avi)



Parameter Estimation Problems

Parameter Estimation: Problem Formulation
Boundary Value Problem Approach
Generalized Gauss Newton Methods

Optimization Criteria and Convergence
Practical Solution

Sensitivity Analysis
Examples:

Lotka-Volterra, Unstable Process
Enzyme Reaction Kinetics
Photosynthesis
Bistable Belousov-Zhabotinskii Reaction
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After discretization: large scale nonlinear
constrained approximation problem

min
X

1
2
||F1(X)||22

F2(X) = 0 (contains discretized BVP) or ≥ 0

numerical treatment with Newton type methods
unconstrained case (IVP methods)
constrained case (BVP methods)
examples for structure exploitation
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Solution Methods - IVP Approach
Nonlinear unconstrained least squares problem

minϕ(X) =
1
2

FT
1 (X)F1(X), X ∈ Rn, F1 : Rn → Rm1

optimal solution X∗ solves the system of nonlinear equations

∇ϕ(X∗) = JT
1 (X∗)F1(X∗) = 0

Newton iteration: X+ = X− + ∆X for improving an approximate solution X
of optimality equations, ∆X solves ∇2ϕ(X)∆X = −∇ϕ(X), or,
equivalently,(

JT
1 J1 +

m1∑
i=1

F1,i∇XXF1,i

)
∆X = −JT

1 F1, J1 = ∇F1(X)

variations of Newton’s method involve the approximation of the term

S =

m1∑
i=1

F1,i∇XXF1,i(X).

Gauss-Newton: S = 0

Optimization Methods for Calibration and Validation of Dynamic Models Bangkok 2017



Solution Methods - BVP Approach

Nonlinear constrained least squares problem

minϕ(X) =
1
2

FT
1 (X)F1(X) s.t. F2(X) = 0

Iteration: Xk+1 = Xk + ∆Xk

The increment ∆Xk solves the quadratic problem:

min
∆X∈Ωk

1
2

∆XTAk∆X +∇ϕ(Xk)T∆X

s.t. F2(Xk) + J2(Xk)T∆X = 0

Ak is an approximation of the Hessian of the Lagrangian:

Ak ≈ ∇XXL(Xk, λk), L(X, λ) = ϕ(X)− λTF2(X),

≈ JT
1 (Xk)J1(Xk) + F1(Xk)T∇XXF1(Xk)− λT∇XXF2(Xk).
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Generalized Gauss-Newton

Generalized Gauss-Newton: ignore second order derivatives

Ak = J1(Xk)TJ1(Xk)

∆Xk solves linear constrained problem

min
∆X∈Ωk

1
2
||F1(Xk) + J1(Xk)∆X||22

s.t. F2(Xk) + J2(Xk)∆X = 0
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Optimality Criteria

Constraint Qualification
X is regular if Constraint Qualification (CQ) holds:

rank(J2(X)) = #Constraints

Lagrange function:

L(X, λ) =
1
2
||F1(X)||22 − λTF2(X)
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Optimality Criteria

Necessary Conditions:
Let

X∗ be a regular solution of the nonlinear problem.
Then

X∗ is feasible F2(X∗) = 0
there exists a unique vector λ∗ such that

∇XL(X∗, λ∗) = 0 ← Stationarity

furthermore, second order necessary conditions hold:

dT∇XXL(X∗, λ∗)d ≥ 0,∀d ∈ {w|J2(X∗)w = 0}
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Optimality Criteria

Sufficient Condition:
Let

(X∗, λ∗) satisfy first-order necessary conditions
Positive Definiteness (PD) condition holds:

dT∇XXL(X∗, λ∗)d > 0,∀d ∈ {w 6= 0|J2(x∗)w = 0}

Then
X∗ is a strict local minimum.
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Optimality Criteria

for linear systems regularity conditions (CQ) and (PD) are equivalent
to

rank(J2(X)) = #constraints

rank(J(X)) = #variables, J(X) = J =

(
J1
J2

)
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Optimality Criteria

Karush-Kuhn-Tucker Conditions: Feasibility + Stationarity

FT
1 (X∗)J1(X∗) = 0

F2(X∗) = 0

(X∗, λ∗) is called a KKT-Point
Under regularity conditions:
(X∗, λ∗) is a KKT-Point of the nonlinear problem⇔ (0, λ∗) is a
KKT-Point of the linear problem
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Solution of the Linear Least-Squares Problem

At each GN iteration we need to solve:

min
1
2
||F1(Xk) + J1(Xk)∆X||22,

s.t. F2(Xk) + J2(Xk)∆X = 0
where Ji(X) = ∇Fi(X)

KKT conditions:

(
JT

1 (X)J1(X) JT
2 (X)

J2(X) 0

)(
∆X
−λ

)
=

(
−JT

1 (X)F1(X)
F2(X)

)
The linear system has unique solution, if (CQ) and (PD) are
fulfilled
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Solution of the Linear Least-Squares Problem

∆Xk can be formally written with the help of a solution operator J+

∆Xk = −J+(Xk)F(Xk)

J+ is a generalized inverse: J+JJ+ = J+

J =

(
J1
J2

)
, F =

(
F1
F2

)
The solution operator J+ is explicitly given by

J+(X) =
(
I 0

)( JT
1 (X)J1(X) J2(X)T

J2(X) 0

)−1( J1(X)T 0
0 I

)
.
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Local Contraction

Bock, 1987

Let (weighted) Lipschitz conditions be true for J und J+:

(J) ‖J+(Y)[J(X+t(Y−X))−J(X)](Y−X)‖
t ‖Y−X‖2 ≤ ω(X) ≤ ω <∞ nonlinearity

(J+) ‖[J+(Z)−J+(X)]R(X)‖
‖Z−X‖ ≤ κ(X) ≤ κ < 1 incompatibility

∀t ∈ [0, 1], X − Y = J+(X)F(X), R(X) := F(X)− J(X)J(X)+F(X)

Then: For X0 with ‖J(X0)+F(X0)‖ω/2 + κ < 1

Xj+1 = Xj − J(Xj)+F(Xj) is well defined

Xk → X∗ stationary point with J(X∗)+F(X∗) = 0

and ‖∆Xj+1‖ ≤ (‖∆Xj‖ω/2 + κ) ‖∆Xj‖

linear convergence (convergence rate→ κ)
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Local Contraction

Bock, 1987

Interpretation:
Nonlinearity ω

ω is a measure for nonlinearity (weighted second derivative)
ω−1 characterizes region of validity of the linear model

Incompatibility constant κ

κ < 1 : necessary for identifiability
depends on compatibility of the model with measurements
a stationary point with κ < 1 is statistically stable
GGN method does not converge to large residual solutions
(Advantage!)

Optimization Methods for Calibration and Validation of Dynamic Models Bangkok 2017



Globalization Strategies

Line Search

Iteration: Xk+1 = Xk + tk∆Xk, tk ∈]0, 1], where tk is a stepsize

stepsize tk is chosen such that the next iterate Xk+1 is “better” than Xk:
T1(Xk+1) < T1(Xk)

exact penalty function as merit function

T1(X) :=
1
2
||F1(X)||22 +

∑
i,Eq.

αi|F2i(X)|

with sufficiently large weights αi > 0

tk is (approximate) minimum of the merit function

tk = arg min
0<t≤1

T1(Xk + t∆Xk)
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Globalization Strategies

Line Search

Iteration: Xk+1 = Xk + tk∆Xk, tk ∈]0, 1], where tk is a stepsize

stepsize tk is chosen such that the next iterate Xk+1 is “better” than Xk:
T1(Xk+1) < T1(Xk)

exact penalty function as merit function

T1(X) :=
1
2
||F1(X)||22 +

∑
i,Eq.

αi|F2i(X)|

with sufficiently large weights αi > 0

alternative: line search based on the natural level functions

Tk(Xk + tk∆Xk) = ||J+(Xk)F(Xk + tk∆Xk)||22

→ new effective “affine invariant” globalization strategy - guarantees full
step in local convergence domain (Bock, K., Schlöder, 2000, K. 2004)
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Numerical Solution of Linear Least-Squares
Problems

Unconstrained case:
QR factorization with column pivoting on the matrix J1:

J1P = Q
(

R
0

)
= (Q1, Q2)

(
R
0

)
= Q1R,

where
P is an n× n permutation matrix (orthogonal);
Q is m1 × m1 orthogonal;
Q1 ∈ Rm1×n, Q2 ∈ Rm1×(m1−n);
R is n× n upper triangular.

We get

||F1 + J1∆X||22 = ||QT
1 F1 + RPT∆X||22 + ||QT

2 F1||22

We minimize ||F1 + J1∆X||22 by driving the first term in to zero:

∆X = −PR−1QT
1 F1
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Numerical Solution of Linear Least-Squares
Problems

alternative: use SVD of Jacobian J1

J1 = U
(

S
0

)
VT = (U1, U2)

(
S
0

)
VT = U1SVT ,

where
U is an orthogonal m1 × m1 matrix;
U1 ∈ Rm1×n, U2 ∈ Rm1×(m1−n);
V is an orthogonal n× n matrix;
S is a diagonal n× n matrix with elements σ1 ≥ σ2 ≥ ... ≥ σn ≥ 0.

the solution ∆X:

∆X = −VS−1UT
1 F1 = −

∑
i

uT
i F1

σi
vi
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Numerical Solution of Linear Least-Squares
Problems

Constrained case:

Orthogonal decomposition of J2: J2 = LQT where
L ∈ Rm2×n,
L = [L′, 0], L′ ∈ Rm2×m2 is a lower triangular matrix,
Q ∈ Rn×n, QT Q = I.

Linear problem can be rewritten:

min
1
2
||F1 + J1Q∆Y||22,

s.t. F2 + L∆Y = 0,

with ∆Y = QT∆X
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Numerical Solution of Linear Least-Squares
Problems

The solution ∆Y is:

∆Y =

(
∆Y2
∆Y1

)
,

where ∆Y2 is computed by

∆Y2 = −(L′)−1F2

and ∆Y1 solves unconstrained linear least squares problem:

min
∆Y1

1
2
||F̃1 + J̃1∆Y1||22 =

||(F1 − J1Q1(L′)−1F2) + (J1Q2)∆Y1||22.

solution in original coordinates by back-transformation

∆X = Q∆Y
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Treatment of Ill-Conditioned Problems

Regularization by a-priori information:
Given a-priori information on values of variables X̃i

Given variances for this information σ2
i

i.e Xi = X̃i ± σi

Then: Modify cost functional:

||F1(X)||22 → ||F1(X)||22 +

n∑
i

(Xi − X̃i)
2

σ2
i

JT
1 J1 → JT

1 J1 + Σ−2

analogous: a-priori information with covariance matrix Cov

→ important for moving horizon estimation in real-time
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Treatment of Ill-Conditioned Problems
Regularisation by Rank Reduction

in each iteration solve

min
x
‖Ax + b‖2

2

perform SVD, decompose A = USVT

min
y
‖Sy + b̂‖2

2

where y = VT x, b̂ = UT b and
S = Diag(si), s1 ≥ s2 ≥ ... ≥ sn ≥ 0

condition cond(S) = s1
sn

too large?

rank reduction!
criterion: set rank to j∗ where j∗ = max{j|sj ≥ C}

choice of C ? note: var(yj) = β2

s2
j

for σ2
max maximal acceptable variance: choose C ≥ β

σmax
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Treatment of Ill-Conditioned Problems

Regularisation by Rank Reduction
alternative: QR-decomposition (with pivoting) A = QR

estimate for the condition number

condQR :
|r11|
|rnn|

rank citerion set rank to j∗ where j∗ = max{j||rjj| ≥ C}

Optimization Methods for Calibration and Validation of Dynamic Models Bangkok 2017



How to Solve Linear Constrained l1 Problem?

min
∆X∈Ωk

||F1(Xk) + J1(Xk)∆X||1,

s.t. F2(Xk) + J2(Xk)∆X = 0 or ≥ 0

cost function is piecewise-linear, very special structure that can
be effectively epxloited→ so called multiple pivoting or long steps
(Osborne 76, Gabasov et al 79, K. et al 98, Osborne, K. 2006)
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(Block-)Sparse Structures (Multiple Shooting)
Bock 81, 87, Schlöder 83

large block sparse super-structures from multiple experiments

structures from parametrization in time, e.g. induced by multiple
shooting→ typical staircase structure

# Experiments N: 1 ∼ 100
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(Block-)Sparse Structures (Multiple Shooting)
Bock 81, 87, Schlöder 83

large block sparse super-structures from multiple experiments
structures from parametrization in time, e.g. induced by multiple
shooting→ typical staircase structure

# Meshpoints m : 2→≥ 100
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Evaluation of Linear Systems
DAE Initial Value Problems and Derivatives

BDF discretization for stiff systems
adaptive integrators for ODE and relaxed DAE
treatment of implicitly given discontinuities and jumps in dynamics
fast and accurate computation of 1. and 2. order derivatives
Combining

”automatic differentiation” of model equations and
”internal numerical differentiation” of adaptive discretization scheme

in forward or reverse mode

...

e.g. DAESOL, RKFSWT (Bauer et al ’98, Albersmeyer ’05, Kirches ’06)
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Parameter Estimation Problems

Parameter Estimation: Problem Formulation
Boundary Value Problem Approach
Generalized Gauss Newton Methods

Optimization Criteria and Convergence
Practical Solution

Sensitivity Analysis
Examples:

Lotka-Volterra, Unstable Process
Orbit Determination Problem for Satellites
Photosynthesis
Bistable Belousov-Zhabotinskii Reaction
Enzyme Reaction Kinetics
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Assessment of Uncertainties in Parameter Estimates
for Constrained Case (l2)

“good fit” is not sufficient - we need to know uncertainty of
parameter estimate X?(ε) depending on measurement errors, e.g.
ε ∈ N(0, β2I)

first order expansion at X? = X?(0):

∆X = X?(ε)− X? ≈ −J(X?)+
(
ε
0

)
yields covariance-matrix approximation for states and parameters

C := E
(
∆X∆XT) =

(
J(X?)+

(
ε
0

)(
ε
0

)T

J(X?)+T

)
=

J(X?)+
(
β2I 0
0 0

)
J(X?)+T
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Assessment of Uncertainties in Parameter Estimates
for Constrained Case (l2)

Nonlinear confidence region GN(α) for the state and parameter
estimates with error probability α is

GN(α) := {X|F2(X) = 0, ‖F1(X)‖2
2 − ‖F1(X?)‖2

2 ≤ γ2(α)}
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Assessment of Uncertainties in Parameter Estimates
for Constrained Case (l2)

GN(α) can be approximated through the linearized confidence
region GL(α)

GL(α) := {X | F2(X?) + J2(X?)(X − X?) = 0,
‖F1(X?) + J1(X?)(X − X?)‖2

2 − ‖F1(X?)‖2
2 ≤ γ2(α)}.
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Assessment of Uncertainties in Parameter Estimates
for Constrained Case (l2)

GL(α) can be equivalently represented using generalized inverse
J+:

GL(α) = {X|X = X? − J(X?)+

(
ε
0

)
, ||ε||22 ≤ γ(α)}
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Assessment of Uncertainties in Parameter Estimates
for Constrained Case (l2)

GL(α) is contained in confidence box

GL(α) ⊂ Πn
i=1[X?i − δi,X?i + δi], δi = C1/2

ii γ(α)1/2

exactly, that is

max
X∈GL(α)

|Xi − X?i | = δi, i = 1, ..., n.

C1/2
ii - standard deviations of parameters can be computed fast
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Assessment of Uncertainties in Parameter Estimates
for Constrained Case (l2)

Covariance matrix can be computed for all variables:
→ for parameters and state variables,→ Prediction
Diagonal elements of covariance matrix Cii are variances of
corresponding variables

Important: Variances for functions g(x, p) of parameters and states
can also easily be determined.
Procedure: Introduce new parameter pneu and additional equality
constraint pnew = g(x, p).
Confidence interval for pnew describes quality of g(x, p).
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Characterization of Confidence Ellipsoids
Functions Φα of the covariance matrix C(p, q, u,w) (unconstrained
problem)

A optimal: Average of the variances of the estimates

Φ1(C) =
1
n

traceC

B optimal: maximal square root of diagonal elements of the
covariance matrix (“maximal standard deviation”, proportional to
maximal edge of enclosing box) (Bock, 1987)

ΦM(c) = max
i

(C1/2
ii )

D optimal: Determinant of covariance matrix (“volume”)

Φ0(C) = det(C)

E optimal: Maximum Eigenvalue of covariance matrix (“maximal
semi axis”)

Φ∞(c) = λmax(C)
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Parameter Estimation Problems

Parameter Estimation: Problem Formulation
Boundary Value Problem Approach
Generalized Gauss Newton Methods

Optimization Criteria and Convergence
Practical Solution

Sensitivity Analysis
Examples:

Lotka-Volterra, Unstable Process
Orbit Determination Problem for Satellites
Photosynthesis
Bistable Belousov-Zhabotinskii Reaction
Enzyme Reaction Kinetics
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Example: The Light Reaction in Photosynthesis

Baake, Schlöder, 1992

three experiments with different light intensities:

Laboratory Strasser, Stuttgart
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Photosynthesis: ODE Model

electron transport chain
in photosynthesis:

mathematical model:
nonlinear ODE
with 6 states and 6
parameters

ẋ1 = (ka + k3(ptot − x6))x1 + k3x5x6

ẋ2 = kax1 − (k1 + k3(ptot − x6))x2 + k−1x3 + k3x6(1 −
∑5

i=1 xi)

ẋ3 = k1x2 − (ka + k−1)x3

ẋ4 = kax3 − k2x4 + k−2x5

ẋ5 = k3x1(ptot − x6) + k2x4 − (ka + k−2 + k3x6)x5

ẋ6 = −k3(1 −
∑5

i=1 xi)x6 + k3(x1 + x2)(ptot − x6) + (ptot − x6)klim

with

ka =
I2(1 − p2T )

1 − p22 − p2T + p22p2T (x1 + x3 + x5)
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Photosynthesis: Measurement Function

Fluorescence is nonlinear function of states and parameters:

bi(x(ti), p) =

{
1− p2T − p22

p2T
+

1− (x1(ti) + x3(ti) + x5(ti))

1 + p22p2T (x1(ti)+x3(ti)+x5(ti))
1−p2T−p22

}
· S · I2

extra parameter (S) in measurement function (unknown gauge of
apparatus)
Fluorescence measured at 96 time points t1, . . . , t96.

Aim: Estimate model parameters from fluorescence
measurements of living tobacco leaf
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Photosynthesis: Multiple Experiment Structure

Data: 3 experiments with different light intensities
(96 fluorescence measurements)

to be estimated:

4 system parameter
ptot, p2T , p22, k3

+ 1 measurement parameter S

+ 3 x 2 parameter depending on
experiment klim, I2

Optimization Methods for Calibration and Validation of Dynamic Models Bangkok 2017



Initital Trajectories for Multiple Shooting
Photosynthesis

k3 p22 p2T ptot S I2 klim
Exp 1 20 0.5 0.4 10 10 300 1
Exp 2 210 1
Exp 3 150 1

initial guesses
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Photosynthesis: 3-Experiment Solution

Acc:10−3, 12 Iterations, 3 damped

k3 p22 p2T ptot S
solution 17.3 0.0710 0.841 11.5 18.1

standard error1 ±0.76 ±0.015 ±0.015 ±0.84 ±1.0

100% 70% 50%
I2 klim I2 klim I2 klim

solution 195. 1.07 143. 1.92 101. 1.67
standard error1 ±9.0 ±0.36 ±6.9 ±0.26 ±5.3 ±0.17

1estimated; multiplication by 4.5 yields 95% confidence intervals
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Belousov Zhabotinskii Reaction

The stochiometric system

Nonlinear ODE
9 chem. species 5 control parameters

14 unknown parameters
[HBrO2] Ȧ = p1BCH2 − p−1AD − p2ACH + p−2D2

−p4ABH + p−4F2 + p5FGH − p−5AI

−2p7A2 + 2p−7BDH − kEA

[BrO3
−] Ḃ = −p1BCH2 + p−1AD − p4ABH + p−4F2

+p6FI − p−6BGH2 + p7A2 − p−7BDH − kE(B − BE)

[Br−] Ċ = −p−1BCH2 + p−1AD − p2ACH + p−2D2

−p3CDH + p−3E − kE(C − CE)

[HOBr] Ḋ = p1BCH2 − p−1AD + 2p2ACH − 2p−2D2

−p3CDH + p−3E + p7A2 − p−7BDH − kED
[Br2] Ė = p3CDH − p−3E − kEE

[BrO2] Ḟ = 2p4ABH − 2p−4F2 − p5FGH + p−5AI

−p6FI + p−6BGH2 − kEF

[Ce3+] Ġ = −p5FGH + p−5AI + p6FI − p−6BGH2

−kE(G − GE)

[H+] Ḣ = −2p1BCH2 + 2p−1AD − p2ACH + p−2D2

−p3CDH + p−3E − p4ABH + p−4F2 − p5FGH
+p−5AI + 2p6FI

−2p−6BGH2 + p7A2 − p−7BDH − kE(H − HE)

[Ce4+] İ = p5FGH − p−5AI − p6FI + p−6BGH2 − kEI
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Belousov Zhabotinskii Reaction – PE Problem

Description of experiments

f (y, q, p) = 0
fy(y, q, p) · h = 0

hT · h = 1

⊗

Measurement points: 44 points on 4-dim manifold of turning points (Geiseler, Bar-Eli ’81)

Manifold depends on 14 unknown parameters (rate constants)

Problem: fit 4-dim manifold on 44 5-dim points, which are implicitly given by ⊗

→ 894 variables; 838 nonlinear equations 88 least squares terms 498 positivity constraints
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Belousov Zhabotinskii Reaction: Simulation for Initial
Guesses
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Belousov Zhabotinskii Reaction – Solution
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Enzyme Reaction Kinetics

K. et al 2001

enzymes = biocatalysts, highly active

demand from industry since they accelerate biochemical
reactions

but: great expenses for the evaluation of the long-term behaviour

practice: very many expensive experiments are carried out
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Enzyme Reaction Kinetics

K. et al 2001

kNU

N −→
←− U
kUN

kND ↘ ↙ kUD

D

N: native enzyme, measurable
U: unfolded enzyme, not measurable
D: deactivated enzyme, not measurable
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Enzyme Reaction Kinetics

K. et al 2001

d CD

d t
=

(
k0

d exp
(
−∆h∗u

RT

)
KU + k0

N exp
(
−∆h∗N

RT

))
CE0 − CD

1 + KU
,

d CS

d t
=

V̇
V

(
C0

S − CS
)
− rmax

CS

km + CS
,

CD(0) = 0, CS(0) = C0
S,

KU = exp
(
−∆h0

u

RT

)
exp

(
∆S0

u

R

)
,

rmax = A exp
(
−∆h∗E

RT

)
CE0 − CD

1 + KU
.
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Application: Enzyme Reaction Kinetics

Cooperation with

nonlinear Arrhenius kinetics
8 unknown parameters p

1 time dependent control function u(t): temperature
1 indirect measurement: consumption of base necessary to
neutralize the acidic reaction product (side-reaction!)
quantities describing stability (total turn-over number and half-life)
are of interest!
problem is too ill-conditioned, impossible to identify parameters
from 1 experiment!
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Experiments with Candida antarctica on ionic resin
(“Novozym”)

l2 parameter estimation from the standard experiment: estimated values of
parameters ± standard deviation after parameter estimation

initial profile
p1 27.86 ± 4.42
p2 48.98 ± 10.92
p3 1.73 ± 2.39 ×105

p4 634.20 ± 806.00×106

p5 -1.43 ± 1.50 ×107

p6 -7.50 ± 4.16 ×107

p7 -4.15 ± 0.091
p8 -8.63 ± 2.00
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Can we find better experiments?
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Question: Can We Determine Better Experimental
Conditions?

Aim:

choose experimental conditions ξ = (u, q,w),
control functions: temperature profiles, feed streams,
control parameters: volume, initial conditions,
sampling design: measurement devices and times

aim: “to maximize information gain”, here: “to minimize
uncertainty of resulting parameter estimate”
subject to state, control and parameter constraints

safety, domain of model validity, costs, feasibility of experiments
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Outline

Introduction

Dynamic Process Models

Parameter Estimation in Dynamic Processes

Optimum Experimental Design
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Summary

numerical methods and applications
parameter estimation for DAE

based on multiple shooting
Generalized Gauss-Newton
for l2 and l1 problems
sensitivity analysis as basis for optimum experimental design
complex nonlinear problems can be treated
next: methods for nonlinear optimum experimental design
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THANK YOU VERY MUCH FOR YOUR ATTENTION!
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